739 resultados para automation
Resumo:
Research and innovation in the built environment is increasingly taking on an inter-disciplinary nature. The built environment industry and professional practice have long adopted multi and inter-disciplinary practices. The application of IT in Construction is moving beyond the automation and replication of discrete mono and multi-disciplinary tasks to replicate and model the improved inter-disciplinary processes of modern design and construction practice. A major long-term research project underway at the University of Salford seeks to develop IT modelling capability to support the design of buildings and facilities that are buildable, maintainable, operable, sustainable, accessible, and have properties of acoustic, thermal and business support performance that are of a high standard. Such an IT modelling tool has been the dream of the research community for a long time. Recent advances in technology are beginning to make such a modelling tool feasible.----- Some of the key problems with its further research and development, and with its ultimate implementation, will be the challenges of multiple research and built environment stakeholders sharing a common vision, language and sense of trust. This paper explores these challenges as a set of research issues that underpin the development of appropriate technology to support realisable advances in construction process improvements.
Resumo:
This paper proposes a new approach for delay-dependent robust H-infinity stability analysis and control synthesis of uncertain systems with time-varying delay. The key features of the approach include the introduction of a new Lyapunov–Krasovskii functional, the construction of an augmented matrix with uncorrelated terms, and the employment of a tighter bounding technique. As a result, significant performance improvement is achieved in system analysis and synthesis without using either free weighting matrices or model transformation. Examples are given to demonstrate the effectiveness of the proposed approach.
Resumo:
The literature on corporate identity management suggests that managing corporate identity is a strategically complex task embracing the shaping of a range of dimensions of organisational life. The performance measurement literature and its applications likewise now also emphasise organisational ability to incorporate various dimensions considering both financial and non-financial performance measures when assessing success. The inclusion of these soft non-financial measures challenges organisations to quantify intangible aspects of performance such as corporate identity, transforming unmeasurables into measurables. This paper explores the regulatory roles of the use of the balanced scorecard in shaping key dimensions of corporate identities in a public sector shared service provider in Australia. This case study employs qualitative interviews of senior managers and employees, secondary data and participant observation. The findings suggest that the use of the balanced scorecard has potential to support identity construction, as an organisational symbol, a communication tool of vision, and as strategy, through creating conversations that self-regulate behaviour. The development of an integrated performance measurement system, the balanced scorecard, becomes an expression of a desired corporate identity, and the performance measures and continuous process provide the resource for interpreting actual corporate identities. Through this process of understanding and mobilising the interaction, it may be possible to create a less obtrusive and more subtle way to control “what an organisation is”. This case study also suggests that the theoretical and practical fusion of the disciplinary knowledge around corporate identities and performance measurement systems could make a contribution to understanding and shaping corporate identities.
Resumo:
The Sydney Opera House Facilities Management Exemplar Project (SOH FM Exemplar Project) aims to develop innovative research on facility management (FM) with the focus on asset maintenance. The project utilises the Sydney Opera House (SOH), one of most unique buildings in Australia, to research and create innovative FM strategies and models that will have a direct beneficial role for the Australian facilities management industry as well as the economy as a whole. The procurement, benchmarking and digitisation are crucial in improving the performance of FM. The procurement develops strategic plan and deployment framework enabling products, services, etc. meet objectives of performance, economic, environment, etc. Benchmarking is a technology used to compare practice and assess performance against the competitors recognised as industry leaders who achieve most successful activities in the field. Digitisation develops digitized FM modelling that facilitates the integration and automation of facility management. The project carries out the research on all the three areas as well as the relationship between them. It aims to develop an integrated approach for the improvement of FM performance.
Resumo:
Smart Skies is an international research project exploring the development and demonstration of future aviation technologies which facilitate the more efficient utilisation of airspace for both manned and unmanned aircraft. These technologies include autonomous vision-based collision avoidance systems, autonomous airspace separation management systems and a mobile ground-based radar system to support non-segregated UAS operations within the NAS. This presentation will provide an introduction to the key programs of research, detail results from recent flight trial activities and will outline future directions for the project.
Resumo:
The following technical report describes the approach and algorithm used to detect marine mammals from aerial imagery taken from manned/unmanned platform. The aim is to automate the process of counting the population of dugongs and other mammals. We have developed and algorithm that automatically presents to a user a number of possible candidates of these mammals. We tested the algorithm in two distinct datasets taken from different altitudes. Analysis and discussion is presented in regards with the complexity of the input datasets, the detection performance.
Resumo:
Use of Unmanned Aerial Vehicles (UAVs) in support of government applications has already seen significant growth and the potential for use of UAVs in commercial applications is expected to rapidly expand in the near future. However, the issue remains on how such automated or operator-controlled aircraft can be safely integrated into current airspace. If the goal of integration is to be realized, issues regarding safe separation in densely populated airspace must be investigated. This paper investigates automated separation management concepts in uncontrolled airspace that may help prepare for an expected growth of UAVs in Class G airspace. Not only are such investigations helpful for the UAV integration issue, the automated separation management concepts investigated by the authors can also be useful for the development of new or improved Air Traffic Control services in remote regions without any existing infrastructure. The paper will also provide an overview of the Smart Skies program and discuss the corresponding Smart Skies research and development effort to evaluate aircraft separation management algorithms using simulations involving realworld data communication channels, and verified against actual flight trials. This paper presents results from a unique flight test concept that uses real-time flight test data from Australia over existing commercial communication channels to a control center in Seattle for real-time separation management of actual and simulated aircraft. The paper also assesses the performance of an automated aircraft separation manager.
Resumo:
In this paper, the stability of an autonomous microgrid with multiple distributed generators (DG) is studied through eigenvalue analysis. It is assumed that all the DGs are connected through Voltage Source Converter (VSC) and all connected loads are passive. The VSCs are controlled by state feedback controller to achieve desired voltage and current outputs that are decided by a droop controller. The state space models of each of the converters with its associated feedback are derived. These are then connected with the state space models of the droop, network and loads to form a homogeneous model, through which the eigenvalues are evaluated. The system stability is then investigated as a function of the droop controller real and reac-tive power coefficients. These observations are then verified through simulation studies using PSCAD/EMTDC. It will be shown that the simulation results closely agree with stability be-havior predicted by the eigenvalue analysis.
Resumo:
This paper describes the operation of a microgrid that contains a custom power park (CPP). The park may contain an unbalanced and/or nonlinear load and the microgrid may contain many dis-tributed generators (DGs). One of the DGs in the microgrid is used as a compensator to achieve load compensation. A new method is proposed for current reference generation for load compensation, which takes into account the real and reactive power to be supplied by the DG connected to the compensator. The real and reactive power from the DGs and the utility source is tightly regulated assuming that dedicated communication channels are available. Therefore this scheme is most suitable in cases where the loads in CPP and DGs are physically located close to each other. The proposal is validated through extensive simulation studies using EMTDC/PSCAD software package (version 4.2).