172 resultados para The genetic code
Resumo:
Objective: To examine the reliability of work-related activity coding for injury-related hospitalisations in Australia. Method: A random sample of 4373 injury-related hospital separations from 1 July 2002 to 30 June 2004 were obtained from a stratified random sample of 50 hospitals across 4 states in Australia. From this sample, cases were identified as work-related if they contained an ICD-10-AM work-related activity code (U73) allocated by either: (i) the original coder; (ii) an independent auditor, blinded to the original code; or (iii) a research assistant, blinded to both the original and auditor codes, who reviewed narrative text extracted from the medical record. The concordance of activity coding and number of cases identified as work-related using each method were compared. Results: Of the 4373 cases sampled, 318 cases were identified as being work-related using any of the three methods for identification. The original coder identified 217 and the auditor identified 266 work-related cases (68.2% and 83.6% of the total cases identified, respectively). Around 10% of cases were only identified through the text description review. The original coder and auditor agreed on the assignment of work-relatedness for 68.9% of cases. Conclusions and Implications: The current best estimates of the frequency of hospital admissions for occupational injury underestimate the burden by around 32%. This is a substantial underestimate that has major implications for public policy, and highlights the need for further work on improving the quality and completeness of routine, administrative data sources for a more complete identification of work-related injuries.
Resumo:
Sugarcane orange rust, caused by Puccinia kuehnii, was once considered a minor disease in the Australian sugar industry. However, in 2000 a new race of the pathogen devastated the high-performing sugarcane cultivar Q124, and caused the industry Aus$150–210 million in yield losses. At the time of the epidemic, very little was known about the genetic and pathogenic diversity of the fungus in Australia and neighbouring sugar industries. DNA sequence data from three rDNA regions were used to determine the genetic relationships between isolates within two P. kuehnii collections. The first collection comprised only recent Australian field isolates and limited sequence variation was detected within this population. In the second study, Australian isolates were compared with isolates from Papua New Guinea, Indonesia, China and historical herbarium collections. Greater sequence variation was detected in this collection and phylogenetic analyses grouped the isolates into three clades. All isolates from commercial cane fields clustered together including the recent Australianfield isolates and the Australian historical isolate from 1898.The other two clades included rust isolates from wild and garden canes in Indonesia and PNG. These rusts appeared morphologically similar to P. kuehnii and could potentially pose a quarantine threat to the Australian sugar industry. The results have revealed greater diversity in sugarcane rusts than previously thought.
Resumo:
In the filed of semantic grid, QoS-based Web service scheduling for workflow optimization is an important problem.However, in semantic and service rich environment like semantic grid, the emergence of context constraints on Web services is very common making the scheduling consider not only quality properties of Web services, but also inter service dependencies which are formed due to the context constraints imposed on Web services. In this paper, we present a repair genetic algorithm, namely minimal-conflict hill-climbing repair genetic algorithm, to address scheduling optimization problems in workflow applications in the presence of domain constraints and inter service dependencies. Experimental results demonstrate the scalability and effectiveness of the genetic algorithm.
Resumo:
In the field of semantic grid, QoS-based Web service composition is an important problem. In semantic and service rich environment like semantic grid, the emergence of context constraints on Web services is very common making the composition consider not only QoS properties of Web services, but also inter service dependencies and conflicts which are formed due to the context constraints imposed on Web services. In this paper, we present a repair genetic algorithm, namely minimal-conflict hill-climbing repair genetic algorithm, to address the Web service composition optimization problem in the presence of domain constraints and inter service dependencies and conflicts. Experimental results demonstrate the scalability and effectiveness of the genetic algorithm.
Resumo:
Chlamydia pneumoniae is a common human and animal pathogen associated with a wide range of upper and lower respiratory tract infections. In more recent years there has been increasing evidence to suggest a link between C. pneumoniae and chronic diseases in humans, including atherosclerosis, stroke and Alzheimer’s disease. C. pneumoniae human strains show little genetic variation, indicating that the human-derived strain originated from a common ancestor in the recent past. Despite extensive information on the genetics and morphology processes of the human strain, knowledge concerning many other hosts (including marsupials, amphibians, reptiles and equines) remains virtually unexplored. The koala (Phascolarctos cinereus) is a native Australian marsupial under threat due to habitat loss, predation and disease. Koalas are very susceptible to chlamydial infections, most commonly affecting the conjunctiva, urogenital tract and/or respiratory tract. To address this gap in the literature, the present study (i) provides a detailed description of the morphologic and genomic architecture of the C. pneumoniae koala (and human) strain, and shows that the koala strain is microscopically, developmentally and genetically distinct from the C. pneumoniae human strain, and (ii) examines the genetic relationship of geographically diverse C. pneumoniae isolates from human, marsupial, amphibian, reptilian and equine hosts, and identifies two distinct lineages that have arisen from animal-to-human cross species transmissions. Chapter One of this thesis explores the scientific problem and aims of this study, while Chapter Two provides a detailed literature review of the background in this field of work. Chapter Three, the first results chapter, describes the morphology and developmental stages of C. pneumoniae koala isolate LPCoLN, as revealed by fluorescence and transmission electron microscopy. The profile of this isolate, when cultured in HEp-2 human epithelial cells, was quite different to the human AR39 isolate. Koala LPCoLN inclusions were larger; the elementary bodies did not have the characteristic pear-shaped appearance, and the developmental cycle was completed within a shorter period of time (as confirmed by quantitative real-time PCR). These in vitro findings might reflect biological differences between koala LPCoLN and human AR39 in vivo. Chapter Four describes the complete genome sequence of the koala respiratory pathogen, C. pneumoniae LPCoLN. This is the first animal isolate of C. pneumoniae to be fully-sequenced. The genome sequence provides new insights into genomic ‘plasticity’ (organisation), evolution and biology of koala LPCoLN, relative to four complete C. pneumoniae human genomes (AR39, CWL029, J138 and TW183). Koala LPCoLN contains a plasmid that is not shared with any of the human isolates, there is evidence of gene loss in nucleotide salvage pathways, and there are 10 hot spot genomic regions of variation that were previously not identified in the C. pneumoniae human genomes. Sequence (partial-length) from a second, independent, wild koala isolate (EBB) at several gene loci confirmed that the koala LPCoLN isolate was representative of a koala C. pneumoniae strain. The combined sequence data provides evidence that the C. pneumoniae animal (koala LPCoLN) genome is ancestral to the C. pneumoniae human genomes and that human infections may have originated from zoonotic infections. Chapter Five examines key genome components of the five C. pneumoniae genomes in more detail. This analysis reveals genomic features that are shared by and/or contribute to the broad ecological adaptability and evolution of C. pneumoniae. This analysis resulted in the identification of 65 gene sequences for further analysis of intraspecific variation, and revealed some interesting differences, including fragmentation, truncation and gene decay (loss of redundant ancestral traits). This study provides valuable insights into metabolic diversity, adaptation and evolution of C. pneumoniae. Chapter Six utilises a subset of 23 target genes identified from the previous genomic comparisons and makes a significant contribution to our understanding of genetic variability among C. pneumoniae human (11) and animal (6 amphibian, 5 reptilian, 1 equine and 7 marsupial hosts) isolates. It has been shown that the animal isolates are genetically diverse, unlike the human isolates that are virtually clonal. More convincing evidence that C. pneumoniae originated in animals and recently (in the last few hundred thousand years) crossed host species to infect humans is provided in this study. It is proposed that two animal-to-human cross species events have occurred in the context of the results, one evident by the nearly clonal human genotype circulating in the world today, and the other by a more animal-like genotype apparent in Indigenous Australians. Taken together, these data indicate that the C. pneumoniae koala LPCoLN isolate has morphologic and genomic characteristics that are distinct from the human isolates. These differences may affect the survival and activity of the C. pneumoniae koala pathogen in its natural host, in vivo. This study, by utilising the genetic diversity of C. pneumoniae, identified new genetic markers for distinguishing human and animal isolates. However, not all C. pneumoniae isolates were genetically diverse; in fact, several isolates were highly conserved, if not identical in sequence (i.e. Australian marsupials) emphasising that at some stage in the evolution of this pathogen, there has been an adaptation/s to a particular host, providing some stability in the genome. The outcomes of this study by experimental and bioinformatic approaches have significantly enhanced our knowledge of the biology of this pathogen and will advance opportunities for the investigation of novel vaccine targets, antimicrobial therapy, or blocking of pathogenic pathways.
Resumo:
This chapter is about the role of law in the management of the health workforce in Australia. Health professionals play an important role in the health system as the providers of treatment and care — without health professionals health systems would not function. The relationship between health professionals and patients has always been complex and is often subject to some form of regulation by the state. The first surviving written reference to such legal regulation dates from 1795-1750 BCE when the Babylonian Code of Hammurabi stated: “If a physician make a large incision with the operating knife, and kill him, or open a tumor with the operating knife, and cut out the eye, his hands shall be cut off.” Alexander the Great recommended the crucifixion of health professionals who killed their patients. Fortunately, the law in Australia prescribes lesser penalties for erring health professionals, but at the heart of modern regulation are similar concerns to those that underpinned the ancient Babylonian Code — to create conditions to ensure the safety of patients and the provision of quality services by health professionals.
Resumo:
Patterns of connectivity among local populations influence the dynamics of regional systems, but most ecological models have concentrated on explaining the effect of connectivity on local population structure using dynamic processes covering short spatial and temporal scales. In this study, a model was developed in an extended spatial system to examine the hypothesis that long term connectivity levels among local populations are influenced by the spatial distribution of resources and other habitat factors. The habitat heterogeneity model was applied to local wild rabbit populations in the semi-arid Mitchell region of southern central Queensland (the Eastern system). Species' specific population parameters which were appropriate for the rabbit in this region were used. The model predicted a wide range of long term connectivity levels among sites, ranging from the extreme isolation of some sites to relatively high interaction probabilities for others. The validity of model assumptions was assessed by regressing model output against independent population genetic data, and explained over 80% of the variation in the highly structured genetic data set. Furthermore, the model was robust, explaining a significant proportion of the variation in the genetic data over a wide range of parameters. The performance of the habitat heterogeneity model was further assessed by simulating the widely reported recent range expansion of the wild rabbit into the Mitchell region from the adjacent, panmictic Western rabbit population system. The model explained well the independently determined genetic characteristics of the Eastern system at different hierarchic levels, from site specific differences (for example, fixation of a single allele in the population at one site), to differences between population systems (absence of an allele in the Eastern system which is present in all Western system sites). The model therefore explained the past and long term processes which have led to the formation and maintenance of the highly structured Eastern rabbit population system. Most animals exhibit sex biased dispersal which may influence long term connectivity levels among local populations, and thus the dynamics of regional systems. When appropriate sex specific dispersal characteristics were used, the habitat heterogeneity model predicted substantially different interaction patterns between female-only and combined male and female dispersal scenarios. In the latter case, model output was validated using data from a bi-parentally inherited genetic marker. Again, the model explained over 80% of the variation in the genetic data. The fact that such a large proportion of variability is explained in two genetic data sets provides very good evidence that habitat heterogeneity influences long term connectivity levels among local rabbit populations in the Mitchell region for both males and females. The habitat heterogeneity model thus provides a powerful approach for understanding the large scale processes that shape regional population systems in general. Therefore the model has the potential to be useful as a tool to aid in the management of those systems, whether it be for pest management or conservation purposes.
Resumo:
We have recently demonstrated the geographic isolation of rice tungro bacilliform virus (RTBV) populations in the tungro-endemic provinces of Isabela and North Cotabato, Philippines. In this study, we examined the genetic structure of the virus populations at the tungro-outbreak sites of Lanao del Norte, a province adjacent to North Cotabato. We also analyzed the virus populations at the tungro-endemic sites of Subang, Indonesia, and Dien Khanh, Vietnam. Total DNA extracts from 274 isolates were digested with EcoRV restriction enzyme and hybridized with a full-length probe of RTBV. In the total population, 22 EcoRV-restricted genome profiles (genotypes) were identified. Although overlapping genotypes could be observed, the outbreak sites of Lanao del Norte had a genotype combination distinct from that of Subang or Dien Khanh but a genotype combination similar to that identified earlier from North Cotabato, the adjacent endemic province. Sequence analysis of the intergenic region and part of the ORF1 RTBV genome from randomly selected genotypes confirms the geographic clustering of RTBV genotypes and, combined with restriction analysis, the results suggest a fragmented spatial distribution of RTBV local populations in the three countries. Because RTBV depends on rice tungro spherical virus (RTSV) for transmission, the population dynamics of both tungro viruses were then examined at the endemic and outbreak sites within the Philippines. The RTBV genotypes and the coat protein RTSV genotypes were used as indicators for virus diversity. A shift in population structure of both viruses was observed at the outbreak sites with a reduced RTBV but increased RTSV gene diversity
Resumo:
Chlamydia pneumoniae is a common human and animal pathogen associated with a wide range of diseases. Since the first isolation of C. pneumoniae TWAR in 1965, all human isolates have been essentially clonal, providing little evolutionary insight. To address this gap, we investigated the genetic diversity of 30 isolates from diverse geographical locations, from both human and animal origin (amphibian, reptilian, equine and marsupial). Based on the level of variation that we observed at 23 discreet gene loci, it was clearly evident that the animal isolates were more diverse than the isolates of human origin. Furthermore, we show that C. pneumoniae isolates could be grouped into five major genotypes, A-E, with A, B, D and E genotypes linked by geographical location, whereas genotype C was found across multiple continents. Our evidence strongly supports two separate animal-to-human cross species transfer events in the evolutionary history of this pathogen. The C. pneumoniae human genotype identified in the USA, Canada, Taiwan, Iran, Japan, Korea and Australia (non- Indigenous) most likely originated from a single amphibian or reptilian lineage, which appears to have been previously geographically widespread. We identified a separate human lineage present in two Australian Indigenous isolates (independent geographical locations). This lineage is distinct and is present in Australian amphibians as well as a range of Australian marsupials.
Resumo:
Background Both sorghum (Sorghum bicolor) and sugarcane (Saccharum officinarum) are members of the Andropogoneae tribe in the Poaceae and are each other's closest relatives amongst cultivated plants. Both are relatively recent domesticates and comparatively little of the genetic potential of these taxa and their wild relatives has been captured by breeding programmes to date. This review assesses the genetic gains made by plant breeders since domestication and the progress in the characterization of genetic resources and their utilization in crop improvement for these two related species. Genetic Resources The genome of sorghum has recently been sequenced providing a great boost to our knowledge of the evolution of grass genomes and the wealth of diversity within S. bicolor taxa. Molecular analysis of the Sorghum genus has identified close relatives of S. bicolor with novel traits, endosperm structure and composition that may be used to expand the cultivated gene pool. Mutant populations (including TILLING populations) provide a useful addition to genetic resources for this species. Sugarcane is a complex polyploid with a large and variable number of copies of each gene. The wild relatives of sugarcane represent a reservoir of genetic diversity for use in sugarcane improvement. Techniques for quantitative molecular analysis of gene or allele copy number in this genetically complex crop have been developed. SNP discovery and mapping in sugarcane has been advanced by the development of high-throughput techniques for ecoTILLING in sugarcane. Genetic linkage maps of the sugarcane genome are being improved for use in breeding selection. The improvement of both sorghum and sugarcane will be accelerated by the incorporation of more diverse germplasm into the domesticated gene pools using molecular tools and the improved knowledge of these genomes.
Resumo:
Seventeen year olds who come into contact with the police in Queensland are classified as adults and are not afforded the protections available under the Youth Justice Act 1992 (Qld) (YJA). As with any other adult, their offences are dealt with under a raft of legislative provisions including the Criminal Code 1889 (Qld) (the Code), the Police Powers and Responsibilities Act 2000 (Qld) (PPRA) and the Penalties and Sentences Act 1992 (Qld) (PSA). This article argues that this situation is unfair and contravenes international human rights agreements which Australia has ratified, in particular the United Nations Convention on the Rights of the Child (CROC). Article 1 of that Convention defines a child as a person under the age of 18. The youth offences legislation in Queensland only applies to those who have not yet turned 17. This article examines the effects of this anomaly in Queensland, focusing in particular on the pre-adjudication treatment of ‘17 year old adults’.
Resumo:
The redclaw crayfish Cherax quadricarinatus (von Martens) accounts for the entire commercial production of freshwater crayfish in Australia. Two forms have been recognized, an 'Eastern' form in northern Queensland and a 'Western' form in the Northern Territory and far northern Western Australia. To date, only the Eastern form has been exported overseas for culture (including to China). The genetic structure of three Chinese redclaw crayfish culture lines from three different geographical locations in China (Xiamen in Fujian Province, Guangzhou in Guangdong Province and Chongming in Shanghai) were investigated for their levels and patterns of genetic diversity using microsatellite markers. Twenty-eight SSR markers were isolated and used to analyse genetic diversity levels in three redclaw crayfish culture lines in China. This study set out to improve the current understanding of the molecular genetic characteristics of imported strains of redclaw crayfish reared in China. Microsatellite analysis revealed moderate allelic and high gene diversity in all three culture lines. Polymorphism information content estimates for polymorphic loci varied between 0.1168 and 0.8040, while pairwise F ST values among culture lines were moderate (0.0020-0.1244). The highest estimate of divergence was evident between the Xiamen and Guangzhou populations.
Resumo:
The major limitation of current typing methods for Streptococcus pyogenes, such as emm sequence typing and T typing, is that these are based on regions subject to considerable selective pressure. Multilocus sequence typing (MLST) is a better indicator of the genetic backbone of a strain but is not widely used due to high costs. The objective of this study was to develop a robust and cost-effective alternative to S. pyogenes MLST. A 10-member single nucleotide polymorphism (SNP) set that provides a Simpson’s Index of Diversity (D) of 0.99 with respect to the S. pyogenes MLST database was derived. A typing format involving high-resolution melting (HRM) analysis of small fragments nucleated by each of the resolution-optimized SNPs was developed. The fragments were 59–119 bp in size and, based on differences in G+C content, were predicted to generate three to six resolvable HRM curves. The combination of curves across each of the 10 fragments can be used to generate a melt type (MelT) for each sequence type (ST). The 525 STs currently in the S. pyogenes MLST database are predicted to resolve into 298 distinct MelTs and the method is calculated to provide a D of 0.996 against the MLST database. The MelTs are concordant with the S. pyogenes population structure. To validate the method we examined clinical isolates of S. pyogenes of 70 STs. Curves were generated as predicted by G+C content discriminating the 70 STs into 65 distinct MelTs.
Resumo:
This thesis provides the first evidence on how ownership concentration and structure relate to the timeliness of price discovery and reporting lags in Malaysia. Based on a sample of 1,276 Malaysian firms from 1996 to 2009, the results show that ownership concentration and the identity of the largest shareholder matter to the timeliness of price discovery and reporting lags. Specifically, closely-held firms are more timely in their price discovery and have shorter reporting lags, particularly if the largest shareholder is a foreigner or a financial institution. Government-owned firms have longer reporting lags, as expected, but we find no evidence that family-owned firms have significantly different timeliness of price discovery and reporting lags than other firms. Additional analysis shows that prior to the implementation of the Malaysian Code of Corporate Governance, firms were more timely in their price discovery but longer in their reporting lag.
Resumo:
Server consolidation using virtualization technology has become an important technology to improve the energy efficiency of data centers. Virtual machine placement is the key in the server consolidation. In the past few years, many approaches to the virtual machine placement have been proposed. However, existing virtual machine placement approaches to the virtual machine placement problem consider the energy consumption by physical machines in a data center only, but do not consider the energy consumption in communication network in the data center. However, the energy consumption in the communication network in a data center is not trivial, and therefore should be considered in the virtual machine placement in order to make the data center more energy-efficient. In this paper, we propose a genetic algorithm for a new virtual machine placement problem that considers the energy consumption in both the servers and the communication network in the data center. Experimental results show that the genetic algorithm performs well when tackling test problems of different kinds, and scales up well when the problem size increases.