133 resultados para Temporal aggregation
Resumo:
Fruit flies require protein for reproductive development and actively feed upon protein sources in the field. Liquid protein baits mixed with insecticide are used routinely to manage pest fruit flies, such as Bactrocera tryoni (Froggatt). However, there are still some gaps in the underpinning science required to improve the efficacy of bait spray technology. The spatial and temporal foraging behaviour of B. tryoni in response to protein was investigated in the field. A series of linked trials using either wild flies in the open field or laboratory-reared flies in field cages and a netted orchard were undertaken using nectarines and guavas. Key questions investigated were the fly's response to protein relative to: height of protein within the canopy, fruiting status of the tree, time of day, season and size of the experimental arena. Canopy height had a significant response on B. tryoni foraging, with more flies foraging on protein in the mid to upper canopy. Fruiting status also had a significant effect on foraging, with most flies responding to protein when applied to fruiting hosts. B. tryoni demonstrated a repeatable diurnal response pattern to protein, with the peak response being between 12:00–16:00 h. Season showed significant but unpredictable effects on fruit fly response to protein in the subtropical environment where the work was undertaken. Relative humidity, but not temperature or rainfall, was positively correlated with protein response. The number of B. tryoni responding to protein decreased dramatically as the spatial scale increased from field cage through to the open field. Based on these results, it is recommend that, to be most effective, protein bait sprays should be applied to the mid to upper canopies of fruiting hosts. Overall, the results show that the protein used, an industry standard, has very low attractancy to B. tryoni and that further work is urgently needed to develop more volatile protein baits.
Resumo:
Extracting and aggregating the relevant event records relating to an identified security incident from the multitude of heterogeneous logs in an enterprise network is a difficult challenge. Presenting the information in a meaningful way is an additional challenge. This paper looks at solutions to this problem by first identifying three main transforms; log collection, correlation, and visual transformation. Having identified that the CEE project will address the first transform, this paper focuses on the second, while the third is left for future work. To aggregate by correlating event records we demonstrate the use of two correlation methods, simple and composite. These make use of a defined mapping schema and confidence values to dynamically query the normalised dataset and to constrain result events to within a time window. Doing so improves the quality of results, required for the iterative re-querying process being undertaken. Final results of the process are output as nodes and edges suitable for presentation as a network graph.
Resumo:
This thesis was a step forward in improving the stability of power systems by applying new control and modelling techniques. The developed methods use the data obtained from voltage angle measurement devices which are synchronized with GPS signals to stabilize the system and avoid system-wide blackouts in the event of severe faults. New approaches were developed in this research for identifying and estimating reduced dynamic system models using phasor measurement units. The main goal of this research is achieved by integrating the developed methods to obtain a feasible wide-area control system for stabilizing the power systems.
Resumo:
Soil-based emissions of nitrous oxide (N2O), a well-known greenhouse gas, have been associated with changes in soil water-filled pore space (WFPS) and soil temperature in many previous studies. However, it is acknowledged that the environment-N2O relationship is complex and still relatively poorly unknown. In this article, we employed a Bayesian model selection approach (Reversible jump Markov chain Monte Carlo) to develop a data-informed model of the relationship between daily N2O emissions and daily WFPS and soil temperature measurements between March 2007 and February 2009 from a soil under pasture in Queensland, Australia, taking seasonal factors and time-lagged effects into account. The model indicates a very strong relationship between a hybrid seasonal structure and daily N2O emission, with the latter substantially increased in summer. Given the other variables in the model, daily soil WFPS, lagged by a week, had a negative influence on daily N2O; there was evidence of a nonlinear positive relationship between daily soil WFPS and daily N2O emission; and daily soil temperature tended to have a linear positive relationship with daily N2O emission when daily soil temperature was above a threshold of approximately 19°C. We suggest that this flexible Bayesian modeling approach could facilitate greater understanding of the shape of the covariate-N2O flux relation and detection of effect thresholds in the natural temporal variation of environmental variables on N2O emission.
Resumo:
To identify potential migraine therapeutics, extracts of eighteen plants were screened to detect plant constituents affecting ADP induced platelet aggregation and [14C]5-hydroxytryptamine (5-HT) release. Extracts of the seven plants exhibiting significant inhibition of platelet function were reanalysed in the presence of polyvinyl pyrrolidone (PVP) to remove polyphenolic tannins that precipitate proteins. Two of these extracts no longer exhibited inhibition of platelet activity after removal of tannins. However, extracts of Crataegus monogyna, Ipomoea pes-caprae, Eremophila freelingii, Eremophila longifolia, and Asteromyrtus symphyocarpa still potently inhibited ADP induced human platelet [14C]5-HT release in vitro, with levels ranging from 62 to 95% inhibition. I. pes-caprae, and C. monogyna also caused significant inhibition of ADP induced platelet aggregation. All of these plants have been previously used as traditional headache treatments, except for C. monogyna which is used primarily for protective effects on the cardiovascular system. Further studies elucidating the compounds that are responsible for these anti-platelet effects are needed to determine their exact mechanism of action.
Resumo:
Smart Card data from Automated Fare Collection system has been considered as a promising source of information for transit planning. However, literature has been limited to mining travel patterns from transit users and suggesting the potential of using this information. This paper proposes a method for mining spatial regular origins-destinations and temporal habitual travelling time from transit users. These travel regularity are discussed as being useful for transit planning. After reconstructing the travel itineraries, three levels of Density-Based Spatial Clustering of Application with Noise (DBSCAN) have been utilised to retrieve travel regularity of each of each frequent transit users. Analyses of passenger classifications and personal travel time variability estimation are performed as the examples of using travel regularity in transit planning. The methodology introduced in this paper is of interest for transit authorities in planning and managements
Resumo:
This thesis developed semi-parametric regression models for estimating the spatio-temporal distribution of outdoor airborne ultrafine particle number concentration (PNC). The models developed incorporate multivariate penalised splines and random walks and autoregressive errors in order to estimate non-linear functions of space, time and other covariates. The models were applied to data from the "Ultrafine Particles from Traffic Emissions and Child" project in Brisbane, Australia, and to longitudinal measurements of air quality in Helsinki, Finland. The spline and random walk aspects of the models reveal how the daily trend in PNC changes over the year in Helsinki and the similarities and differences in the daily and weekly trends across multiple primary schools in Brisbane. Midday peaks in PNC in Brisbane locations are attributed to new particle formation events at the Port of Brisbane and Brisbane Airport.
Resumo:
Lyngbya majuscula is a cyanobacterium (blue-green algae) occurring naturally in tropical and subtropical coastal areas worldwide. Deception Bay, in Northern Moreton Bay, Queensland, has a history of Lyngbya blooms, and forms a case study for this investigation. The South East Queensland (SEQ) Healthy Waterways Partnership, collaboration between government, industry, research and the community, was formed to address issues affecting the health of the river catchments and waterways of South East Queensland. The Partnership coordinated the Lyngbya Research and Management Program (2005-2007) which culminated in a Coastal Algal Blooms (CAB) Action Plan for harmful and nuisance algal blooms, such as Lyngbya majuscula. This first phase of the project was predominantly of a scientific nature and also facilitated the collection of additional data to better understand Lyngbya blooms. The second phase of this project, SEQ Healthy Waterways Strategy 2007-2012, is now underway to implement the CAB Action Plan and as such is more management focussed. As part of the first phase of the project, a Science model for the initiation of a Lyngbya bloom was built using Bayesian Networks (BN). The structure of the Science Bayesian Network was built by the Lyngbya Science Working Group (LSWG) which was drawn from diverse disciplines. The BN was then quantified with annual data and expert knowledge. Scenario testing confirmed the expected temporal nature of bloom initiation and it was recommended that the next version of the BN be extended to take this into account. Elicitation for this BN thus occurred at three levels: design, quantification and verification. The first level involved construction of the conceptual model itself, definition of the nodes within the model and identification of sources of information to quantify the nodes. The second level included elicitation of expert opinion and representation of this information in a form suitable for inclusion in the BN. The third and final level concerned the specification of scenarios used to verify the model. The second phase of the project provides the opportunity to update the network with the newly collected detailed data obtained during the previous phase of the project. Specifically the temporal nature of Lyngbya blooms is of interest. Management efforts need to be directed to the most vulnerable periods to bloom initiation in the Bay. To model the temporal aspects of Lyngbya we are using Object Oriented Bayesian networks (OOBN) to create ‘time slices’ for each of the periods of interest during the summer. OOBNs provide a framework to simplify knowledge representation and facilitate reuse of nodes and network fragments. An OOBN is more hierarchical than a traditional BN with any sub-network able to contain other sub-networks. Connectivity between OOBNs is an important feature and allows information flow between the time slices. This study demonstrates more sophisticated use of expert information within Bayesian networks, which combine expert knowledge with data (categorized using expert-defined thresholds) within an expert-defined model structure. Based on the results from the verification process the experts are able to target areas requiring greater precision and those exhibiting temporal behaviour. The time slices incorporate the data for that time period for each of the temporal nodes (instead of using the annual data from the previous static Science BN) and include lag effects to allow the effect from one time slice to flow to the next time slice. We demonstrate a concurrent steady increase in the probability of initiation of a Lyngbya bloom and conclude that the inclusion of temporal aspects in the BN model is consistent with the perceptions of Lyngbya behaviour held by the stakeholders. This extended model provides a more accurate representation of the increased risk of algal blooms in the summer months and show that the opinions elicited to inform a static BN can be readily extended to a dynamic OOBN, providing more comprehensive information for decision makers.
Resumo:
Background Commercially available instrumented treadmill systems that provide continuous measures of temporospatial gait parameters have recently become available for clinical gait analysis. This study evaluated the level of agreement between temporospatial gait parameters derived from a new instrumented treadmill, which incorporated a capacitance-based pressure array, with those measured by a conventional instrumented walkway (criterion standard). Methods Temporospatial gait parameters were estimated from 39 healthy adults while walking over an instrumented walkway (GAITRite®) and instrumented treadmill system (Zebris) at matched speed. Differences in temporospatial parameters derived from the two systems were evaluated using repeated measures ANOVA models. Pearson-product-moment correlations were used to investigate relationships between variables measured by each system. Agreement was assessed by calculating the bias and 95% limits of agreement. Results All temporospatial parameters measured via the instrumented walkway were significantly different from those obtained from the instrumented treadmill (P < .01). Temporospatial parameters derived from the two systems were highly correlated (r, 0.79–0.95). The 95% limits of agreement for temporal parameters were typically less than ±2% of gait cycle duration. However, 95% limits of agreement for spatial measures were as much as ±5 cm. Conclusions Differences in temporospatial parameters between systems were small but statistically significant and of similar magnitude to changes reported between shod and unshod gait in healthy young adults. Temporospatial parameters derived from an instrumented treadmill, therefore, are not representative of those obtained from an instrumented walkway and should not be interpreted with reference to literature on overground walking.
Resumo:
This study investigates the role of environmental dynamics (i.e., market turbulence) as a factor influencing an organisation’s top management temporal orientation, and the impact of temporal orientation on innovative and financial performance. Results show that firm’s operating in highly turbulent markets exhibit higher degrees of future orientation, as opposed to present orientation. Future-oriented (rather than present-oriented) firms also experience higher levels of both incremental and radical innovations, which in turn generate financial performance. The study highlights the important role of shared strategic mindset (which is contextually influenced) as a driving factor behind the firm innovative and financial performance.
Resumo:
INTRODUCTION Dengue fever (DF) in Vietnam remains a serious emerging arboviral disease, which generates significant concerns among international health authorities. Incidence rates of DF have increased significantly during the last few years in many provinces and cities, especially Hanoi. The purpose of this study was to detect DF hot spots and identify the disease dynamics dispersion of DF over the period between 2004 and 2009 in Hanoi, Vietnam. METHODS Daily data on DF cases and population data for each postcode area of Hanoi between January 1998 and December 2009 were obtained from the Hanoi Center for Preventive Health and the General Statistic Office of Vietnam. Moran's I statistic was used to assess the spatial autocorrelation of reported DF. Spatial scan statistics and logistic regression were used to identify space-time clusters and dispersion of DF. RESULTS The study revealed a clear trend of geographic expansion of DF transmission in Hanoi through the study periods (OR 1.17, 95% CI 1.02-1.34). The spatial scan statistics showed that 6/14 (42.9%) districts in Hanoi had significant cluster patterns, which lasted 29 days and were limited to a radius of 1,000 m. The study also demonstrated that most DF cases occurred between June and November, during which the rainfall and temperatures are highest. CONCLUSIONS There is evidence for the existence of statistically significant clusters of DF in Hanoi, and that the geographical distribution of DF has expanded over recent years. This finding provides a foundation for further investigation into the social and environmental factors responsible for changing disease patterns, and provides data to inform program planning for DF control.
Resumo:
Many cell types form clumps or aggregates when cultured in vitro through a variety of mechanisms including rapid cell proliferation, chemotaxis, or direct cell-to-cell contact. In this paper we develop an agent-based model to explore the formation of aggregates in cultures where cells are initially distributed uniformly, at random, on a two-dimensional substrate. Our model includes unbiased random cell motion, together with two mechanisms which can produce cell aggregates: (i) rapid cell proliferation, and (ii) a biased cell motility mechanism where cells can sense other cells within a finite range, and will tend to move towards areas with higher numbers of cells. We then introduce a pair-correlation function which allows us to quantify aspects of the spatial patterns produced by our agent-based model. In particular, these pair-correlation functions are able to detect differences between domains populated uniformly at random (i.e. at the exclusion complete spatial randomness (ECSR) state) and those where the proliferation and biased motion rules have been employed - even when such differences are not obvious to the naked eye. The pair-correlation function can also detect the emergence of a characteristic inter-aggregate distance which occurs when the biased motion mechanism is dominant, and is not observed when cell proliferation is the main mechanism of aggregate formation. This suggests that applying the pair-correlation function to experimental images of cell aggregates may provide information about the mechanism associated with observed aggregates. As a proof of concept, we perform such analysis for images of cancer cell aggregates, which are known to be associated with rapid proliferation. The results of our analysis are consistent with the predictions of the proliferation-based simulations, which supports the potential usefulness of pair correlation functions for providing insight into the mechanisms of aggregate formation.
Resumo:
Current routine cell culture techniques are only poorly suited to capture the physiological complexity of tumor microenvironments, wherein tumor cell function is affected by intricate three-dimensional (3D), integrin-dependent cell-cell and cell-extracellular matrix (ECM) interactions. 3D cell cultures allow the investigation of cancer-associated proteases like kallikreins as they degrade ECM proteins and alter integrin signaling, promoting malignant cell behaviors. Here, we employed a hydrogel microwell array platform to probe using a high-throughput mode how ovarian cancer cell aggregates of defined size form and survive in response to the expression of kallikreins and treatment with paclitaxel, by performing microscopic, quantitative image, gene and protein analyses dependent on the varying microwell and aggregate sizes. Paclitaxel treatment increased aggregate formation and survival of kallikrein-expressing cancer cells and levels of integrins and integrin-related factors. Cancer cell aggregate formation was improved with increasing aggregate size, thereby reducing cell death and enhancing integrin expression upon paclitaxel treatment. Therefore, hydrogel microwell arrays are a powerful tool to screen the viability of cancer cell aggregates upon modulation of protease expression, integrin engagement and anti-cancer treatment providing a micro-scaled yet high-throughput technique to assess malignant progression and drug-resistance.
Resumo:
This paper presents a novel framework for the unsupervised alignment of an ensemble of temporal sequences. This approach draws inspiration from the axiom that an ensemble of temporal signals stemming from the same source/class should have lower rank when "aligned" rather than "misaligned". Our approach shares similarities with recent state of the art methods for unsupervised images ensemble alignment (e.g. RASL) which breaks the problem into a set of image alignment problems (which have well known solutions i.e. the Lucas-Kanade algorithm). Similarly, we propose a strategy for decomposing the problem of temporal ensemble alignment into a similar set of independent sequence problems which we claim can be solved reliably through Dynamic Time Warping (DTW). We demonstrate the utility of our method using the Cohn-Kanade+ dataset, to align expression onset across multiple sequences, which allows us to automate the rapid discovery of event annotations.
Resumo:
An important aspect of decision support systems involves applying sophisticated and flexible statistical models to real datasets and communicating these results to decision makers in interpretable ways. An important class of problem is the modelling of incidence such as fire, disease etc. Models of incidence known as point processes or Cox processes are particularly challenging as they are ‘doubly stochastic’ i.e. obtaining the probability mass function of incidents requires two integrals to be evaluated. Existing approaches to the problem either use simple models that obtain predictions using plug-in point estimates and do not distinguish between Cox processes and density estimation but do use sophisticated 3D visualization for interpretation. Alternatively other work employs sophisticated non-parametric Bayesian Cox process models, but do not use visualization to render interpretable complex spatial temporal forecasts. The contribution here is to fill this gap by inferring predictive distributions of Gaussian-log Cox processes and rendering them using state of the art 3D visualization techniques. This requires performing inference on an approximation of the model on a discretized grid of large scale and adapting an existing spatial-diurnal kernel to the log Gaussian Cox process context.