324 resultados para Systems engineering and theory


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electricity has been the major source of power in most railway systems. Reliable, efficient and safe power distribution to the trains is vitally important to the overall quality of railway service. Like any large-scale engineering system, design, operation and planning of traction power systems rely heavily on computer simulation. This paper reviews the major features on modelling and the general practices for traction power system simulation; and introduces the development of the latest simulation approach with discussions on simulation results and practical applications. Remarks will also be given on the future challenges on traction power system simulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Train delay is one of the most important indexes to evaluate the service quality of the railway. Because of the interactions of movement among trains, a delayed train may conflict with trains scheduled on other lines at junction area. Train that loses conflict may be forced to stop or slow down because of restrictive signals, which consequently leads to the loss of run-time and probably enlarges more delays. This paper proposes a time-saving train control method to recover delays as soon as possible. In the proposed method, golden section search is adopted to identify the optimal train speed at the expected time of restrictive signal aspect upgrades, which enables the train to depart from the conflicting area as soon as possible. A heuristic method is then developed to attain the advisory train speed profile assisting drivers in train control. Simulation study indicates that the proposed method enables the train to recover delays as soon as possible in case of disturbances at railway junctions, in comparison with the traditional maximum traction strategy and the green wave strategy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The observing failure and feedback instability might happen when the partial sensors of a satellite attitude control system (SACS) go wrong. A fault diagnosis and isolation (FDI) method based on a fault observer is introduced to detect and isolate the fault sensor at first. Based on the FDI result, the object system state-space equation is transformed and divided into a corresponsive triangular canonical form to decouple the normal subsystem from the fault subsystem. And then the KX fault-tolerant observers of the system in different modes are designed and embedded into online monitoring. The outputs of all KX fault-tolerant observers are selected by the control switch process. That can make sense that the SACS is part-observed and in stable when the partial sensors break down. Simulation results demonstrate the effectiveness and superiority of the proposed method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Field instrumentation of an in-service cast iron gas pipe buried in a residential area is detailed in this paper. The aim of the study was to monitor the long-term pipe behavior to understand the mechanisms of pipe bending in relation to ground movement as a result of seasonal fluctuation of soil moisture content. Field data showed that variation of soil temperature, suction, and moisture content are closely related to the prevailing climate. Change of soil temperature is generally related to the ambient air temperature, with a variation of approximately −3°C −3°C per meter depth from the ground surface in summer (decrease with depth) and winter (increase with depth). Seasonal cyclic variation in moisture content was observed with maxima in February and March, and a minimum around September. The pipe top was under tensile strain during summer and subsequently subjected to compressive strain as soil swelling occurred as a result of increase in moisture content. The study suggests that downward pipe bending occurs in summer because of soil shrinkage, while upward pipe bending occurs in winter when the soil swells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation is based on theoretical study and experiments which extend geometric control theory to practical applications within the field of ocean engineering. We present a method for path planning and control design for underwater vehicles by use of the architecture of differential geometry. In addition to the theoretical design of the trajectory and control strategy, we demonstrate the effectiveness of the method via the implementation onto a test-bed autonomous underwater vehicle. Bridging the gap between theory and application is the ultimate goal of control theory. Major developments have occurred recently in the field of geometric control which narrow this gap and which promote research linking theory and application. In particular, Riemannian and affine differential geometry have proven to be a very effective approach to the modeling of mechanical systems such as underwater vehicles. In this framework, the application of a kinematic reduction allows us to calculate control strategies for fully and under-actuated vehicles via kinematic decoupled motion planning. However, this method has not yet been extended to account for external forces such as dissipative viscous drag and buoyancy induced potentials acting on a submerged vehicle. To fully bridge the gap between theory and application, this dissertation addresses the extension of this geometric control design method to include such forces. We incorporate the hydrodynamic drag experienced by the vehicle by modifying the Levi-Civita affine connection and demonstrate a method for the compensation of potential forces experienced during a prescribed motion. We present the design method for multiple different missions and include experimental results which validate both the extension of the theory and the ability to implement control strategies designed through the use of geometric techniques. By use of the extension presented in this dissertation, the underwater vehicle application successfully demonstrates the applicability of geometric methods to design implementable motion planning solutions for complex mechanical systems having equal or fewer input forces than available degrees of freedom. Thus, we provide another tool with which to further increase the autonomy of underwater vehicles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this editorial letter, we provide the readers of Information Systems with a birds-eye introduction to Process-aware Information Systems (PAIS) – a sub-field of Information Systems that has drawn growing attention in the past two decades, both as an engineering and as a management discipline. Against this backdrop, we briefly discuss how the papers included in this special issue contribute to extending the body of knowledge in this field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper a new graph-theory and improved genetic algorithm based practical method is employed to solve the optimal sectionalizer switch placement problem. The proposed method determines the best locations of sectionalizer switching devices in distribution networks considering the effects of presence of distributed generation (DG) in fitness functions and other optimization constraints, providing the maximum number of costumers to be supplied by distributed generation sources in islanded distribution systems after possible faults. The proposed method is simulated and tested on several distribution test systems in both cases of with DG and non DG situations. The results of the simulations validate the proposed method for switch placement of the distribution network in the presence of distributed generation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Unmanned Aircraft Systems (UAS) describe a diverse range of aircraft that are operated without a human pilot on-board. Unmanned aircraft range from small rotorcraft, which can fit in the palm of your hand, through to fixed wing aircraft comparable in size to that of a commercial passenger jet. The absence of a pilot on-board allows these aircraft to be developed with unique performance capabilities facilitating a wide range of applications in surveillance, environmental management, agriculture, defence, and search and rescue. However, regulations relating to the safe design and operation of UAS first need to be developed before the many potential benefits from these applications can be realised. According to the International Civil Aviation Organization (ICAO), a Risk Management Process (RMP) should support all civil aviation policy and rulemaking activities (ICAO 2009). The RMP is described in International standard, ISO 31000:2009 (ISO, 2009a). This standard is intentionally generic and high-level, providing limited guidance on how it can be effectively applied to complex socio-technical decision problems such as the development of regulations for UAS. Through the application of principles and tools drawn from systems philosophy and systems engineering, this thesis explores how the RMP can be effectively applied to support the development of safety regulations for UAS. A sound systems-theoretic foundation for the RMP is presented in this thesis. Using the case-study scenario of a UAS operation over an inhabited area and through the novel application of principles drawn from general systems modelling philosophy, a consolidated framework of the definitions of the concepts of: safe, risk and hazard is made. The framework is novel in that it facilitates the representation of broader subjective factors in an assessment of the safety of a system; describes the issues associated with the specification of a system-boundary; makes explicit the hierarchical nature of the relationship between the concepts and the subsequent constraints that exist between them; and can be evaluated using a range of analytic or deliberative modelling techniques. Following the general sequence of the RMP, the thesis explores the issues associated with the quantified specification of safety criteria for UAS. A novel risk analysis tool is presented. In contrast to existing risk tools, the analysis tool presented in this thesis quantifiably characterises both the societal and individual risk of UAS operations as a function of the flight path of the aircraft. A novel structuring of the risk evaluation and risk treatment decision processes is then proposed. The structuring is achieved through the application of the Decision Support Problem Technique; a modelling approach that has been previously used to effectively model complex engineering design processes and to support decision-making in relation to airspace design. The final contribution made by this thesis is in the development of an airworthiness regulatory framework for civil UAS. A novel "airworthiness certification matrix" is proposed as a basis for the definition of UAS "Part 21" regulations. The outcome airworthiness certification matrix provides a flexible, systematic and justifiable method for promulgating airworthiness regulations for UAS. In addition, an approach for deriving "Part 1309" regulations for UAS is presented. In contrast to existing approaches, the approach presented in this thesis facilitates a traceable and objective tailoring of system-level reliability requirements across the diverse range of UAS operations. The significance of the research contained in this thesis is clearly demonstrated by its practical real world outcomes. Industry regulatory development groups and the Civil Aviation Safety Authority have endorsed the proposed airworthiness certification matrix. The risk models have also been used to support research undertaken by the Australian Department of Defence. Ultimately, it is hoped that the outcomes from this research will play a significant part in the shaping of regulations for civil UAS, here in Australia and around the world.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research studies information systems that adapt to the context in which they are used and provides recommendations on how the design of such systems can be improved. This thesis covers the problem of context-awareness via two case studies in the insurance and transportation industries. The study highlights shortcomings in the understanding of the relationship between information systems and context. Furthermore, it presents a new, theory-informed approach to design, and provides guidance for system developers seeking to implement context-aware information systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Measuring Earth material behaviour on time scales of millions of years transcends our current capability in the laboratory. We review an alternative path considering multiscale and multiphysics approaches with quantitative structure-property relationships. This approach allows a sound basis to incorporate physical principles such as chemistry, thermodynamics, diffusion and geometry-energy relations into simulations and data assimilation on the vast range of length and time scales encountered in the Earth. We identify key length scales for Earth systems processes and find a substantial scale separation between chemical, hydrous and thermal diffusion. We propose that this allows a simplified two-scale analysis where the outputs from the micro-scale model can be used as inputs for meso-scale simulations, which then in turn becomes the micro-model for the next scale up. We present two fundamental theoretical approaches to link the scales through asymptotic homogenisation from a macroscopic thermodynamic view and percolation renormalisation from a microscopic, statistical mechanics view.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper gives an overview of an ongoing project endeavouring to advance theory-based production and project management, and the rationale for this approach is briefly justified. The status of the theoretical foundation of production management, project management and allied disciplines is discussed, with emphasis on metaphysical grounding of theories, as well as the nature of the heuristic solution method commonly used in these disciplines. Then, on-going work related to different aspects of production and project management is reviewed from both theoretical and practical orientation. Next, information systems agile project management is explored with a view to its re-use in generic project management. In production management, the consequences and implementation of a new, wider theoretical basis are analyzed. The theoretical implications and negative symptoms of the peculiarities of the construction industry for supply chains and supply chain management in construction are observed. Theoretical paths for improvements of inter-organisational relationships in construction which are fundamental for improvement of construction supply chains are described. To conclude, the observations made in this paper vis-à-vis production, project and supply chain management are related again to the theoretical basis of this paper, and finally directions for theory development and future research are given and discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

I develop a model of individuals’ intentions to discontinue information system use. Understanding these intentions is important because they give insights into users’ willingness to carry out system tasks, and provide a basis for maintenance decisions as well as possible replacement decisions. I offer a first conceptualization of factors determining users’ discontinuance intentions on basis of existing literature on technology use, status quo bias and dual factor concepts. The model is grounded in rational choice theory to distinguish determinants of a conscious decision between continuing or discontinuing IS use. I provide details on the empirical test of the model through a field study of IS users in a retail organization. The work will have implications for theory on information systems continuance and dual-factor logic in information system use. The empirical findings will provide suggestions for managers dealing with cessation of information systems and work routine changes in organizations.

Relevância:

100.00% 100.00%

Publicador: