193 resultados para Segmentation cardiaque


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Past studies of software maintenance issues have largely concentrated on the average North American firm. While they have made a substantial contribution to good information system management practice, it is believed that further segmentation of sample data and cross-country comparisons will help to identify patterns of behaviour more akin to many less average organizations in North America and elsewhere. This paper compares the Singapore maintenance scene with the reported North American experience. Comparisons are also made between: Government organizations, Singapore corporations and multinational corporations (MNCs); mainframe and minicomputer installations; and fourth-generation language (4GL) and non-4GL computer installations. Study findings, while in many cases were similar to earlier US studies, do show the importance of Singapore's young application portfolio, the widespread usage of 4GLs and the severe maintenance personnel problems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In public venues, crowd size is a key indicator of crowd safety and stability. Crowding levels can be detected using holistic image features, however this requires a large amount of training data to capture the wide variations in crowd distribution. If a crowd counting algorithm is to be deployed across a large number of cameras, such a large and burdensome training requirement is far from ideal. In this paper we propose an approach that uses local features to count the number of people in each foreground blob segment, so that the total crowd estimate is the sum of the group sizes. This results in an approach that is scalable to crowd volumes not seen in the training data, and can be trained on a very small data set. As a local approach is used, the proposed algorithm can easily be used to estimate crowd density throughout different regions of the scene and be used in a multi-camera environment. A unique localised approach to ground truth annotation reduces the required training data is also presented, as a localised approach to crowd counting has different training requirements to a holistic one. Testing on a large pedestrian database compares the proposed technique to existing holistic techniques and demonstrates improved accuracy, and superior performance when test conditions are unseen in the training set, or a minimal training set is used.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The application of object-based approaches to the problem of extracting vegetation information from images requires accurate delineation of individual tree crowns. This paper presents an automated method for individual tree crown detection and delineation by applying a simplified PCNN model in spectral feature space followed by post-processing using morphological reconstruction. The algorithm was tested on high resolution multi-spectral aerial images and the results are compared with two existing image segmentation algorithms. The results demonstrate that our algorithm outperforms the other two solutions with the average accuracy of 81.8%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis investigates the problem of robot navigation using only landmark bearings. The proposed system allows a robot to move to a ground target location specified by the sensor values observed at this ground target posi- tion. The control actions are computed based on the difference between the current landmark bearings and the target landmark bearings. No Cartesian coordinates with respect to the ground are computed by the control system. The robot navigates using solely information from the bearing sensor space. Most existing robot navigation systems require a ground frame (2D Cartesian coordinate system) in order to navigate from a ground point A to a ground point B. The commonly used sensors such as laser range scanner, sonar, infrared, and vision do not directly provide the 2D ground coordi- nates of the robot. The existing systems use the sensor measurements to localise the robot with respect to a map, a set of 2D coordinates of the objects of interest. It is more natural to navigate between the points in the sensor space corresponding to A and B without requiring the Cartesian map and the localisation process. Research on animals has revealed how insects are able to exploit very limited computational and memory resources to successfully navigate to a desired destination without computing Cartesian positions. For example, a honeybee balances the left and right optical flows to navigate in a nar- row corridor. Unlike many other ants, Cataglyphis bicolor does not secrete pheromone trails in order to find its way home but instead uses the sun as a compass to keep track of its home direction vector. The home vector can be inaccurate, so the ant also uses landmark recognition. More precisely, it takes snapshots and compass headings of some landmarks. To return home, the ant tries to line up the landmarks exactly as they were before it started wandering. This thesis introduces a navigation method based on reflex actions in sensor space. The sensor vector is made of the bearings of some landmarks, and the reflex action is a gradient descent with respect to the distance in sensor space between the current sensor vector and the target sensor vec- tor. Our theoretical analysis shows that except for some fully characterized pathological cases, any point is reachable from any other point by reflex action in the bearing sensor space provided the environment contains three landmarks and is free of obstacles. The trajectories of a robot using reflex navigation, like other image- based visual control strategies, do not correspond necessarily to the shortest paths on the ground, because the sensor error is minimized, not the moving distance on the ground. However, we show that the use of a sequence of waypoints in sensor space can address this problem. In order to identify relevant waypoints, we train a Self Organising Map (SOM) from a set of observations uniformly distributed with respect to the ground. This SOM provides a sense of location to the robot, and allows a form of path planning in sensor space. The navigation proposed system is analysed theoretically, and evaluated both in simulation and with experiments on a real robot.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Surveillance networks are typically monitored by a few people, viewing several monitors displaying the camera feeds. It is then very difficult for a human operator to effectively detect events as they happen. Recently, computer vision research has begun to address ways to automatically process some of this data, to assist human operators. Object tracking, event recognition, crowd analysis and human identification at a distance are being pursued as a means to aid human operators and improve the security of areas such as transport hubs. The task of object tracking is key to the effective use of more advanced technologies. To recognize an event people and objects must be tracked. Tracking also enhances the performance of tasks such as crowd analysis or human identification. Before an object can be tracked, it must be detected. Motion segmentation techniques, widely employed in tracking systems, produce a binary image in which objects can be located. However, these techniques are prone to errors caused by shadows and lighting changes. Detection routines often fail, either due to erroneous motion caused by noise and lighting effects, or due to the detection routines being unable to split occluded regions into their component objects. Particle filters can be used as a self contained tracking system, and make it unnecessary for the task of detection to be carried out separately except for an initial (often manual) detection to initialise the filter. Particle filters use one or more extracted features to evaluate the likelihood of an object existing at a given point each frame. Such systems however do not easily allow for multiple objects to be tracked robustly, and do not explicitly maintain the identity of tracked objects. This dissertation investigates improvements to the performance of object tracking algorithms through improved motion segmentation and the use of a particle filter. A novel hybrid motion segmentation / optical flow algorithm, capable of simultaneously extracting multiple layers of foreground and optical flow in surveillance video frames is proposed. The algorithm is shown to perform well in the presence of adverse lighting conditions, and the optical flow is capable of extracting a moving object. The proposed algorithm is integrated within a tracking system and evaluated using the ETISEO (Evaluation du Traitement et de lInterpretation de Sequences vidEO - Evaluation for video understanding) database, and significant improvement in detection and tracking performance is demonstrated when compared to a baseline system. A Scalable Condensation Filter (SCF), a particle filter designed to work within an existing tracking system, is also developed. The creation and deletion of modes and maintenance of identity is handled by the underlying tracking system; and the tracking system is able to benefit from the improved performance in uncertain conditions arising from occlusion and noise provided by a particle filter. The system is evaluated using the ETISEO database. The dissertation then investigates fusion schemes for multi-spectral tracking systems. Four fusion schemes for combining a thermal and visual colour modality are evaluated using the OTCBVS (Object Tracking and Classification in and Beyond the Visible Spectrum) database. It is shown that a middle fusion scheme yields the best results and demonstrates a significant improvement in performance when compared to a system using either mode individually. Findings from the thesis contribute to improve the performance of semi-automated video processing and therefore improve security in areas under surveillance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the increasing resolution of remote sensing images, road network can be displayed as continuous and homogeneity regions with a certain width rather than traditional thin lines. Therefore, road network extraction from large scale images refers to reliable road surface detection instead of road line extraction. In this paper, a novel automatic road network detection approach based on the combination of homogram segmentation and mathematical morphology is proposed, which includes three main steps: (i) the image is classified based on homogram segmentation to roughly identify the road network regions; (ii) the morphological opening and closing is employed to fill tiny holes and filter out small road branches; and (iii) the extracted road surface is further thinned by a thinning approach, pruned by a proposed method and finally simplified with Douglas-Peucker algorithm. Lastly, the results from some QuickBird images and aerial photos demonstrate the correctness and efficiency of the proposed process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abandoned object detection (AOD) systems are required to run in high traffic situations, with high levels of occlusion. Systems rely on background segmentation techniques to locate abandoned objects, by detecting areas of motion that have stopped. This is often achieved by using a medium term motion detection routine to detect long term changes in the background. When AOD systems are integrated into person tracking system, this often results in two separate motion detectors being used to handle the different requirements. We propose a motion detection system that is capable of detecting medium term motion as well as regular motion. Multiple layers of medium term (static) motion can be detected and segmented. We demonstrate the performance of this motion detection system and as part of an abandoned object detection system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents an object tracking system that utilises a hybrid multi-layer motion segmentation and optical flow algorithm. While many tracking systems seek to combine multiple modalities such as motion and depth or multiple inputs within a fusion system to improve tracking robustness, current systems have avoided the combination of motion and optical flow. This combination allows the use of multiple modes within the object detection stage. Consequently, different categories of objects, within motion or stationary, can be effectively detected utilising either optical flow, static foreground or active foreground information. The proposed system is evaluated using the ETISEO database and evaluation metrics and compared to a baseline system utilising a single mode foreground segmentation technique. Results demonstrate a significant improvement in tracking results can be made through the incorporation of the additional motion information.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Automated crowd counting allows excessive crowding to be detected immediately, without the need for constant human surveillance. Current crowd counting systems are location specific, and for these systems to function properly they must be trained on a large amount of data specific to the target location. As such, configuring multiple systems to use is a tedious and time consuming exercise. We propose a scene invariant crowd counting system which can easily be deployed at a different location to where it was trained. This is achieved using a global scaling factor to relate crowd sizes from one scene to another. We demonstrate that a crowd counting system trained at one viewpoint can achieve a correct classification rate of 90% at a different viewpoint.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Performance evaluation of object tracking systems is typically performed after the data has been processed, by comparing tracking results to ground truth. Whilst this approach is fine when performing offline testing, it does not allow for real-time analysis of the systems performance, which may be of use for live systems to either automatically tune the system or report reliability. In this paper, we propose three metrics that can be used to dynamically asses the performance of an object tracking system. Outputs and results from various stages in the tracking system are used to obtain measures that indicate the performance of motion segmentation, object detection and object matching. The proposed dynamic metrics are shown to accurately indicate tracking errors when visually comparing metric results to tracking output, and are shown to display similar trends to the ETISEO metrics when comparing different tracking configurations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Object tracking systems require accurate segmentation of the objects from the background for effective tracking. Motion segmentation or optical flow can be used to segment incoming images. Whilst optical flow allows multiple moving targets to be separated based on their individual velocities, optical flow techniques are prone to errors caused by changing lighting and occlusions, both common in a surveillance environment. Motion segmentation techniques are more robust to fluctuating lighting and occlusions, but don't provide information on the direction of the motion. In this paper we propose a combined motion segmentation/optical flow algorithm for use in object tracking. The proposed algorithm uses the motion segmentation results to inform the optical flow calculations and ensure that optical flow is only calculated in regions of motion, and improve the performance of the optical flow around the edge of moving objects. Optical flow is calculated at pixel resolution and tracking of flow vectors is employed to improve performance and detect discontinuities, which can indicate the location of overlaps between objects. The algorithm is evaluated by attempting to extract a moving target within the flow images, given expected horizontal and vertical movement (i.e. the algorithms intended use for object tracking). Results show that the proposed algorithm outperforms other widely used optical flow techniques for this surveillance application.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The following paper presents an evaluation of airborne sensors for use in vegetation management in powerline corridors. Three integral stages in the management process are addressed including, the detection of trees, relative positioning with respect to the nearest powerline and vegetation height estimation. Image data, including multi-spectral and high resolution, are analyzed along with LiDAR data captured from fixed wing aircraft. Ground truth data is then used to establish the accuracy and reliability of each sensor thus providing a quantitative comparison of sensor options. Tree detection was achieved through crown delineation using a Pulse-Coupled Neural Network (PCNN) and morphologic reconstruction applied to multi-spectral imagery. Through testing it was shown to achieve a detection rate of 96%, while the accuracy in segmenting groups of trees and single trees correctly was shown to be 75%. Relative positioning using LiDAR achieved a RMSE of 1.4m and 2.1m for cross track distance and along track position respectively, while Direct Georeferencing achieved RMSE of 3.1m in both instances. The estimation of pole and tree heights measured with LiDAR had a RMSE of 0.4m and 0.9m respectively, while Stereo Matching achieved 1.5m and 2.9m. Overall a small number of poles were missed with detection rates of 98% and 95% for LiDAR and Stereo Matching.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding the complexities that are involved in the genetics of multifactorial diseases is still a monumental task. In addition to environmental factors that can influence the risk of disease, there is also a number of other complicating factors. Genetic variants associated with age of disease onset may be different from those variants associated with overall risk of disease, and variants may be located in positions that are not consistent with the traditional protein coding genetic paradigm. Latent Variable Models are well suited for the analysis of genetic data. A latent variable is one that we do not directly observe, but which is believed to exist or is included for computational or analytic convenience in a model. This thesis presents a mixture of methodological developments utilising latent variables, and results from case studies in genetic epidemiology and comparative genomics. Epidemiological studies have identified a number of environmental risk factors for appendicitis, but the disease aetiology of this oft thought useless vestige remains largely a mystery. The effects of smoking on other gastrointestinal disorders are well documented, and in light of this, the thesis investigates the association between smoking and appendicitis through the use of latent variables. By utilising data from a large Australian twin study questionnaire as both cohort and case-control, evidence is found for the association between tobacco smoking and appendicitis. Twin and family studies have also found evidence for the role of heredity in the risk of appendicitis. Results from previous studies are extended here to estimate the heritability of age-at-onset and account for the eect of smoking. This thesis presents a novel approach for performing a genome-wide variance components linkage analysis on transformed residuals from a Cox regression. This method finds evidence for a dierent subset of genes responsible for variation in age at onset than those associated with overall risk of appendicitis. Motivated by increasing evidence of functional activity in regions of the genome once thought of as evolutionary graveyards, this thesis develops a generalisation to the Bayesian multiple changepoint model on aligned DNA sequences for more than two species. This sensitive technique is applied to evaluating the distributions of evolutionary rates, with the finding that they are much more complex than previously apparent. We show strong evidence for at least 9 well-resolved evolutionary rate classes in an alignment of four Drosophila species and at least 7 classes in an alignment of four mammals, including human. A pattern of enrichment and depletion of genic regions in the profiled segments suggests they are functionally significant, and most likely consist of various functional classes. Furthermore, a method of incorporating alignment characteristics representative of function such as GC content and type of mutation into the segmentation model is developed within this thesis. Evidence of fine-structured segmental variation is presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Virtual 3D models of long bones are increasingly being used for implant design and research applications. The current gold standard for the acquisition of such data is Computed Tomography (CT) scanning. Due to radiation exposure, CT is generally limited to the imaging of clinical cases and cadaver specimens. Magnetic Resonance Imaging (MRI) does not involve ionising radiation and therefore can be used to image selected healthy human volunteers for research purposes. The feasibility of MRI as alternative to CT for the acquisition of morphological bone data of the lower extremity has been demonstrated in recent studies [1, 2]. Some of the current limitations of MRI are long scanning times and difficulties with image segmentation in certain anatomical regions due to poor contrast between bone and surrounding muscle tissues. Higher field strength scanners promise to offer faster imaging times or better image quality. In this study image quality at 1.5T is quantitatively compared to images acquired at 3T. --------- The femora of five human volunteers were scanned using 1.5T and 3T MRI scanners from the same manufacturer (Siemens) with similar imaging protocols. A 3D flash sequence was used with TE = 4.66 ms, flip angle = 15° and voxel size = 0.5 × 0.5 × 1 mm. PA-Matrix and body matrix coils were used to cover the lower limb and pelvis respectively. Signal to noise ratio (SNR) [3] and contrast to noise ratio (CNR) [3] of the axial images from the proximal, shaft and distal regions were used to assess the quality of images from the 1.5T and 3T scanners. The SNR was calculated for the muscle and bone-marrow in the axial images. The CNR was calculated for the muscle to cortex and cortex to bone marrow interfaces, respectively. --------- Preliminary results (one volunteer) show that the SNR of muscle for the shaft and distal regions was higher in 3T images (11.65 and 17.60) than 1.5T images (8.12 and 8.11). For the proximal region the SNR of muscles was higher in 1.5T images (7.52) than 3T images (6.78). The SNR of bone marrow was slightly higher in 1.5T images for both proximal and shaft regions, while it was lower in the distal region compared to 3T images. The CNR between muscle and bone of all three regions was higher in 3T images (4.14, 6.55 and 12.99) than in 1.5T images (2.49, 3.25 and 9.89). The CNR between bone-marrow and bone was slightly higher in 1.5T images (4.87, 12.89 and 10.07) compared to 3T images (3.74, 10.83 and 10.15). These results show that the 3T images generated higher contrast between bone and the muscle tissue than the 1.5T images. It is expected that this improvement of image contrast will significantly reduce the time required for the mainly manual segmentation of the MR images. Future work will focus on optimizing the 3T imaging protocol for reducing chemical shift and susceptibility artifacts.