268 resultados para Scaling function
Resumo:
A scaling analysis is performed for the transient boundary layer established adjacent to an inclined flat plate following a ramp cooling boundary condition. The imposed wall temperature decreases linearly up to a specific value over a specific time. It is revealed that if the ramp time is sufficiently large then the boundary layer reaches quasi-steady mode before the growth of the temperature is finished. However, if the ramp time is shorter then the steady state of the boundary layer may be reached after the growth of the temperature is completed. In this case, the ultimate steady state is the same as if the start up had been instantaneous. Note that the cold boundary layer adjacent to the plate is potentially unstable to Rayleigh-Bénard instability if the Rayleigh number exceeds a certain critical value for this cooling case. The onset of instability may set in at different stages of the boundary layer development. A proper identification of the time when the instability may set in is discussed. A numerical verification of the time for the onset of instability is presented in this study. Different flow regimes based on the stability of the boundary layer have also been discussed with numerical results.
Resumo:
The natural convection thermal boundary layer adjacent to an inclined flat plate subject to sudden heating and a temperature boundary condition which follows a ramp function up until a specified time and then remains constant is investigated. The development of the flow from start-up to a steady-state has been described based on scaling analyses and verified by numerical simulations. Different flow regimes based on the Rayleigh number are discussed with numerical results for both boundary conditions. For ramp heating, the boundary layer flow depends on the comparison of the time at which the ramp heating is completed and the time at which the boundary layer completes its growth. If the ramp time is long compared with the steady state time, the layer reaches a quasi steady mode in which the growth of the layer is governed solely by the thermal balance between convection and conduction. On the other hand, if the ramp is completed before the layer becomes steady; the subsequent growth is governed by the balance between buoyancy and inertia, as for the case of instantaneous heating.
Resumo:
The natural convection boundary layer adjacent to an inclined plate subject to sudden cooling boundary condition has been studied. It is found that the cold boundary layer adjacent to the plate is potentially unstable to Rayleigh-Bénard instability if the Rayleigh number exceeds a certain critical value. A scaling relation for the onset of instability of the boundary layer is achieved. The scaling relations have been developed by equating important terms of the governing equations based on the development of the boundary layer with time. The flow adjacent to the plate can be classified broadly into a conductive, a stable convective or an unstable convective regime determined by the Rayleigh number. Proper scales have been established to quantify the flow properties in each of these flow regimes. An appropriate identification of the time when the instability may set in is discussed. A numerical verification of the time for the onset of instability is also presented in this study. Different flow regimes based on the stability of the boundary layer have been discussed with numerical results.
Resumo:
Unsteady natural convection inside a triangular cavity subject to a non-instantaneous heating on the inclined walls in the form of an imposed temperature which increases linearly up to a prescribed steady value over a prescribed time is reported. The development of the flow from start-up to a steady-state has been described based on scaling analyses and direct numerical simulations. The ramp temperature has been chosen in such a way that the boundary layer is reached a quasi-steady mode before the growth of the temperature is completed. In this mode the thermal boundary layer at first grows in thickness, then contracts with increasing time. However, if the imposed wall temperature growth period is sufficiently short, the boundary layer develops differently. It is seen that the shape of many houses are isosceles triangular cross-section. The heat transfer process through the roof of the attic-shaped space should be well understood. Because, in the building energy, one of the most important objectives for design and construction of houses is to provide thermal comfort for occupants. Moreover, in the present energy-conscious society it is also a requirement for houses to be energy efficient, i.e. the energy consumption for heating or air-conditioning houses must be minimized.
Resumo:
An investigation of the natural convection boundary layer adjacent to an inclined semi-infinite plate subject to a temperature boundary condition which follows a ramp function up until some specified time and then remains constant is reported. The development of the flow from start-up to a steadystate has been described based on scaling analyses and verified by numerical simulations. Attention in this study has been given to fluids having a Prandtl number Pr less than unity. The boundary layer flow depends on the comparison of the time at which the ramp heating is completed and the time at which the boundary layer completes its growth. If the ramp time is long compared with the steady state time, the layer reaches a quasi steady mode in which the growth of the layer is governed solely by the thermal balance between convection and conduction. On the other hand, if the ramp is completed before the layer becomes steady; the subsequent growth is governed by the balance between buoyancy and inertia, as for the case of instantaneous heating.
Resumo:
The natural convection thermal boundary layer adjacent to an abruptly heated inclined flat plate is investigated through a scaling analysis and verified by numerical simulations. In general, the development of the thermal flow can be characterized by three distinct stages, i.e. a start-up stage, a transitional stage and a steady state stage. Major scales including the flow velocity, flow development time, and the thermal and viscous boundary layer thicknesses are established to quantify the flow development at different stages and over a wide range of flow parameters. Details of the scaling analysis and the numerical procedures are described in this paper.
Resumo:
A scaling analysis for the natural convection boundary layer adjacent to an inclined semi-infinite plate subject to a non-instantaneous heating in the form of an imposed wall temperature which increases linearly up to a prescribed steady value over a prescribed time is reported. The development of the flow from start-up to a steady-state has been described based on scaling analyses and verified by numerical simulations. The analysis reveals that, if the period of temperature growth on the wall is sufficiently long, the boundary layer reaches a quasisteady mode before the growth of the temperature is completed. In this mode the thermal boundary layer at first grows in thickness and then contracts with increasing time. However, if the imposed wall temperature growth period is sufficiently short, the boundary layer develops differently, but after the wall temperature growth is completed, the boundary layer develops as though the start up had been instantaneous. The steady state values of the boundary layer for both cases are ultimately the same.
Resumo:
Natural convection thermal boundary layer adjacent to an instantaneous heated inclined flat plate is investigated through a scaling analysis and verified by direct numerical simulations. It is revealed from the analysis that the development of the boundary layer may be characterized by three distinct stages, i.e. a start-up stage, a transitional stage and a steady state stage. These three stages can be clearly identified from the numerical simulations. Major scales including the flow velocity, flow development time, and the thermal and viscous boundary layer thicknesses are established to quantify the flow development at different stages and over a wide range of flow parameters. Details of the scaling analysis are described in this paper.
Resumo:
The scaling to characterize unsteady boundary layer development for thermo-magnetic convection of paramagnetic fluids with the Prandtl number greater than one is developed. Under the consideration is a square cavity with initially quiescent isothermal fluid placed in microgravity condition (g = 0) and subject to a uniform, vertical gradient magnetic field. A distinct magnetic thermal-boundary layer is produced by sudden imposing of a higher temperature on the vertical sidewall and as an effect of magnetic body force generated on paramagnetic fluid. The transient flow behavior of the resulting boundary layer is shown to be described by three stages: the start-up stage, the transitional stage and the steady state. The scaling is verified by numerical simulations with the magnetic momentum parameter m variation and the parameter γRa variation.