123 resultados para SEASONAL VARIABILITY
Resumo:
Mixtures of single odours were used to explore the receptor response profile across individual antennae of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). Seven odours were tested including floral and green-leaf volatiles: phenyl acetaldehyde, benzaldehyde, β-caryophyllene, limonene, α-pinene, 1-hexanol, 3Z-hexenyl acetate. Electroantennograms of responses to paired mixtures of odours showed that there was considerable variation in receptor tuning across the receptor field between individuals. Data from some moth antennae showed no additivity, which indicated a restricted receptor profile. Results from other moth antennae to the same odour mixtures showed a range of partial additivity. This indicated that a wider array of receptor types was present in these moths, with a greater percentage of the receptors tuned exclusively to each odour. Peripheral receptor fields show variation in the spectrum of response within a population (of moths) when exposed to high doses of plant volatiles. This may be related to recorded variation in host choice within moth populations as reported by other authors.
Resumo:
Learning can allow individuals to increase their fitness in particular environments. The advantage to learning depends on the predictability of the environment and the extent to which animals can adjust their behaviour. Earlier general models have investigated when environmental predictability might favour the evolution of learning in foraging animals. Here, we construct a theoretical model that predicts the advantages to learning using a specific biological example: oviposition in the Lepidoptera. Our model includes environmental and behavioural complexities relevant to host selection in these insects and tests whether the predictions of the general models still hold. Our results demonstrate how the advantage of learning is maximised when within-generation variability is minimised (the local environment consists mainly of a single host plant species) and between-generation variability is maximised (different host plant species are the most common in different generations). We discuss how our results: (a) can be applied to recent empirical work in different lepidopteran species and (b) predict an important role of learning in lepidopteran agricultural pests.
Resumo:
Surface water and groundwater are the most important water sources in the natural environment. Land use and seasonal factors play an important role in influencing the quality of these water sources. An in-depth understanding of the role of these two influential factors can help to implement an effective catchment management strategy for the protection of these water sources. This paper discusses the outcomes of an extensive research study which investigated the role of land use and seasonal factors on surface water and groundwater pollution in a mixed land use coastal catchment. The study confirmed that the influence exerted on the water environment by seasonal factors is secondary to that of land use. Furthermore, the influence of land use and seasonal factors on surface water and groundwater quality varies with the pollutant species. This highlights the need to specifically take into consideration the targeted pollutants and the key influential factors for the effective protection of vulnerable receiving water environments.
Resumo:
It is common for organizations to maintain multiple variants of a given business process, such as multiple sales processes for different products or multiple bookkeeping processes for different countries. Conventional business process modeling languages do not explicitly support the representation of such families of process variants. This gap triggered significant research efforts over the past decade leading to an array of approaches to business process variability modeling. This survey examines existing approaches in this field based on a common set of criteria and illustrates their key concepts using a running example. The analysis shows that existing approaches are characterized by the fact that they extend a conventional process mod- eling language with constructs that make it able to capture customizable process models. A customizable process model represents a family of process variants in a way that each variant can be derived by adding or deleting fragments according to configuration parameters or according to a domain model. The survey puts into evidence an abundance of customizable process modeling languages, embodying a diverse set of con- structs. In contrast, there is comparatively little tool support for analyzing and constructing customizable process models, as well as a scarcity of empirical evaluations of languages in the field.
Resumo:
This thesis introduced Bayesian statistics as an analysis technique to isolate resonant frequency information in in-cylinder pressure signals taken from internal combustion engines. Applications of these techniques are relevant to engine design (performance and noise), energy conservation (fuel consumption) and alternative fuel evaluation. The use of Bayesian statistics, over traditional techniques, allowed for a more in-depth investigation into previously difficult to isolate engine parameters on a cycle-by-cycle basis. Specifically, these techniques facilitated the determination of the start of pre-mixed and diffusion combustion and for the in-cylinder temperature profile to be resolved on individual consecutive engine cycles. Dr Bodisco further showed the utility of the Bayesian analysis techniques by applying them to in-cylinder pressure signals taken from a compression ignition engine run with fumigated ethanol.
Resumo:
With the advent of alternative fuels, such as biodiesels and related blends, it is important to develop an understanding of their effects on inter-cycle variability which, in turn, influences engine performance as well as its emission. Using four methanol trans-esterified biomass fuels of differing carbon chain length and degree of unsaturation, this paper provides insight into the effect that alternative fuels have on inter-cycle variability. The experiments were conducted with a heavy-duty Cummins, turbo-charged, common-rail compression ignition engine. Combustion performance is reported in terms of the following key in-cylinder parameters: indicated mean effective pressure (IMEP), net heat release rate (NHRR), standard deviation of variability (StDev), coefficient of variation (CoV), peak pressure, peak pressure timing and maximum rate of pressure rise. A link is also established between the cyclic variability and oxygen ratio, which is a good indicator of stoichiometry. The results show that the fatty acid structures did not have a significant effect on injection timing, injection duration, injection pressure, StDev of IMEP, or the timing of peak motoring and combustion pressures. However, a significant effect was noted on the premixed and diffusion combustion proportions, combustion peak pressure and maximum rate of pressure rise. Additionally, the boost pressure, IMEP and combustion peak pressure were found to be directly correlated to the oxygen ratio. The emission of particles positively correlates with oxygen content in the fuel as well as in the air-fuel mixture resulting in a higher total number of particles per unit of mass.
Resumo:
Although transit travel time variability is essential for understanding the deterioration of reliability, optimising transit schedule and route choice; it has not attracted enough attention from the literature. This paper proposes public transport-oriented definitions of travel time variability and explores the distributions of public transport travel time using the Transit Signal Priority data. First, definitions of public transport travel time variability are established by extending the common definitions of variability in the literature and by using route and services data of public transport vehicles. Second, the paper explores the distribution of public transport travel time. A new approach for analysing the distributions involving all transit vehicles as well as vehicles from a specific route is proposed. The Lognormal distribution is revealed as the descriptors for public transport travel time from the same route and service. The methods described in this study could be of interest for both traffic managers and transit operators for planning and managing the transit systems.
Individual variability in compensatory eating following acute exercise in overweight and obese women
Resumo:
Background While compensatory eating following acute aerobic exercise is highly variable, little is known about the underling mechanisms that contribute to alterations in exercise-induced eating behaviour. Methods Overweight and obese women (BMI = 29.6 ± 4.0kg.m2) performed a bout of cycling individually tailored to expend 400kcal (EX), or a time-matched no exercise control condition in a randomised, counter-balanced order. Sixty minutes after the cessation of exercise, an ad libitum test meal was provided. Substrate oxidation and subjective appetite ratings were measured during exercise/time-matched rest, and during the period between the cessation of exercise and food consumption. Results While ad libitum EI did not differ between EX and the control condition (666.0 ± 203.9kcal vs. 664.6 ± 174.4kcal, respectively; ns), there was marked individual variability in compensatory energy intake (EI). The difference in EI between EX and the control condition ranged from -234.3 to +278.5kcal. Carbohydrate oxidation during exercise was positively associated with post-exercise EI, accounting for 37% of the variance in EI (r = 0.57; p = 0.02). Conclusions These data indicate that capacity of acute exercise to create a short-term energy deficit in overweight and obese women is highly variable. Furthermore, exercise-induced CHO oxidation can explain part of the variability in acute exercise-induced compensatory eating. Post-exercise compensatory eating could serve as an adaptive response to facilitate the restoration of carbohydrate balance.
Resumo:
Travel time prediction has long been the topic of transportation research. But most relevant prediction models in the literature are limited to motorways. Travel time prediction on arterial networks is challenging due to involving traffic signals and significant variability of individual vehicle travel time. The limited availability of traffic data from arterial networks makes travel time prediction even more challenging. Recently, there has been significant interest of exploiting Bluetooth data for travel time estimation. This research analysed the real travel time data collected by the Brisbane City Council using the Bluetooth technology on arterials. Databases, including experienced average daily travel time are created and classified for approximately 8 months. Thereafter, based on data characteristics, Seasonal Auto Regressive Integrated Moving Average (SARIMA) modelling is applied on the database for short-term travel time prediction. The SARMIA model not only takes the previous continuous lags into account, but also uses the values from the same time of previous days for travel time prediction. This is carried out by defining a seasonality coefficient which improves the accuracy of travel time prediction in linear models. The accuracy, robustness and transferability of the model are evaluated through comparing the real and predicted values on three sites within Brisbane network. The results contain the detailed validation for different prediction horizons (5 min to 90 minutes). The model performance is evaluated mainly on congested periods and compared to the naive technique of considering the historical average.
Resumo:
This thesis is a population-based epidemiological study to explore the spatial and temporal pattern of malaria, and to assess the relationship between socio-ecological factors and malaria in Yunnan, China. Geospatial and temporal approaches were applied; the high risk areas of the disease were identified; and socio-ecological drivers of malaria were assessed. These findings will provide important evidence for the control and prevention of malaria in China and other countries with a similar situation of endemic malaria.
Resumo:
Recent developments in wearable ECG technology have seen renewed interest in the use of Heart Rate Variability (HRV) feedback for stress management. Yet, little is know about the efficacy of such interventions. Positive reappraisal is an emotion regulation strategy that involves changing the way a situation is construed to decrease emotional impact. We sought to test the effectiveness of an intervention that used feedback on HRV data to prompt positive reappraisal during a stressful work task. Participants (N=122) completed two 20-minute trials of an inbox activity. In-between the first and the second trial participants were assigned to the waitlist control condition, a positive reappraisal via psycho-education condition, or a positive reappraisal via HRV feedback condition. Results revealed that using HRV data to frame a positive reappraisal message is more effective than using psycho-education (or no intervention)–especially for increasing positive mood and reducing arousal.
Resumo:
Public transport travel time variability (PTTV) is essential for understanding deteriorations in the reliability of travel time, optimizing transit schedules and route choices. This paper establishes key definitions of PTTV in which firstly include all buses, and secondly include only a single service from a bus route. The paper then analyses the day-to-day distribution of public transport travel time by using Transit Signal Priority data. A comprehensive approach using both parametric bootstrapping Kolmogorov-Smirnov test and Bayesian Information Creation technique is developed, recommends Lognormal distribution as the best descriptor of bus travel time on urban corridors. The probability density function of Lognormal distribution is finally used for calculating probability indicators of PTTV. The findings of this study are useful for both traffic managers and statisticians for planning and researching the transit systems.
Resumo:
The relationship between temperature and mortality is generally found to be bathtub shaped (rising at both extremes). However, there are limited data on the potential health effects of temperature variability and on temperature itself...
Resumo:
Object classification is plagued by the issue of session variation. Session variation describes any variation that makes one instance of an object look different to another, for instance due to pose or illumination variation. Recent work in the challenging task of face verification has shown that session variability modelling provides a mechanism to overcome some of these limitations. However, for computer vision purposes, it has only been applied in the limited setting of face verification. In this paper we propose a local region based intersession variability (ISV) modelling approach, and apply it to challenging real-world data. We propose a region based session variability modelling approach so that local session variations can be modelled, termed Local ISV. We then demonstrate the efficacy of this technique on a challenging real-world fish image database which includes images taken underwater, providing significant real-world session variations. This Local ISV approach provides a relative performance improvement of, on average, 23% on the challenging MOBIO, Multi-PIE and SCface face databases. It also provides a relative performance improvement of 35% on our challenging fish image dataset.
Resumo:
Urban road dust comprises of a range of potentially toxic metal elements and plays a critical role in degrading urban receiving water quality. Hence, assessing the metal composition and concentration in urban road dust is a high priority. This study investigated the variability of metal composition and concentrations in road dust in 4 different urban land uses in Gold Coast, Australia. Samples from 16 road sites were collected and tested for selected 12 metal species. The data set was analyzed using both univariate and multivariate techniques. Outcomes of the data analysis revealed that the metal concentrations in road dust differ considerably within and between different land uses. Iron, aluminum, magnesium and zinc are the most abundant in urban land uses. It was also noted that metal species such as titanium, nickel, copper and zinc have the highest concentrations in industrial land use. The study outcomes revealed that soil and traffic related sources as key sources of metals deposited on road surfaces.