144 resultados para Rear Vehicle-to-Vehicle Impact Tests.
Resumo:
Airport runway pavement always subjected to huge impact loading due to the hard landing of aircraft on the pavement surface. Therefore runway pavements should have sufficient impact resistance capability to avoid damage causing by hard impact like surface deflection in downward or penetration since the repair works is cumbersome within the operating condition of airport and also increases the service life cost of the pavement structure. Several research works have been carried out on airport runway pavement to measure the present condition of pavement and also to predict future performance of it. However, most of the works are confined by pavement response under moving aircraft loading. Nevertheless, no comprehensive research work is yet conducted to identify the controlling factors which might have significant effect in changing the common pavements damage like surface penetration depth under impact of aircraft. Therefore, a 3D FE study is conducted to determine some effective factors in controlling the top surface penetration depth of runway pavement. Among the exterior factors, mass of the impactor, velocity of the impactor, impact angle and boundary conditions are selected and as interior factors, thickness of the runway pavement, compressive strength and density of materials used in the runway pavement are selected.
Resumo:
Derailments due to lateral collisions between heavy road vehicles and passenger trains at level crossings (LCs) are serious safety issues. A variety of countermeasures in terms of traffic laws, communication technology and warning devices are used for minimising LC accidents; however, innovative civil infrastructure solution is rare. This paper presents a study of the efficacy of guard rail system (GRS) to minimise the derailment potential of trains laterally collided by heavy road vehicles at LCs. For this purpose, a three-dimensional dynamic model of a passenger train running on a ballasted track fitted with guard rail subject to lateral impact caused by a road truck is formulated. This model is capable of predicting the lateral collision-induced derailments with and without GRS. Based on dynamic simulations, derailment prevention mechanism of the GRS is illustrated. Sensitivities of key parameters of the GRS, such as the flange way width, the installation height and contact friction, to the efficacy of GRS are reported. It is shown that guard rails can enhance derailment safety against lateral impacts at LCs.
Resumo:
Knowledge of particle emission characteristics associated with forest fires and in general, biomass burning, is becoming increasingly important due to the impact of these emissions on human health. Of particular importance is developing a better understanding of the size distribution of particles generated from forest combustion under different environmental conditions, as well as provision of emission factors for different particle size ranges. This study was aimed at quantifying particle emission factors from four types of wood found in South East Queensland forests: Spotted Gum (Corymbia citriodora), Red Gum (Eucalypt tereticornis), Blood Gum (Eucalypt intermedia), and Iron bark (Eucalypt decorticans); under controlled laboratory conditions. The experimental set up included a modified commercial stove connected to a dilution system designed for the conditions of the study. Measurements of particle number size distribution and concentration resulting from the burning of woods with a relatively homogenous moisture content (in the range of 15 to 26 %) and for different rates of burning were performed using a TSI Scanning Mobility Particle Sizer (SMPS) in the size range from 10 to 600 nm and a TSI Dust Trak for PM2.5. The results of the study in terms of the relationship between particle number size distribution and different condition of burning for different species show that particle number emission factors and PM2.5 mass emission factors depend on the type of wood and the burning rate; fast burning or slow burning. The average particle number emission factors for fast burning conditions are in the range of 3.3 x 1015 to 5.7 x 1015 particles/kg, and for PM2.5 are in the range of 139 to 217 mg/kg.
Resumo:
Over the past 20 years the nature of rural valuation practice has required most rural valuers to undertake studies in both agriculture (farm management) and valuation, especially if carrying out valuation work for financial institutions. The additional farm financial and management information obtained by rural valuers exceeds that level of information required to value commercial, retail and industrial by the capitalisation of net rent/profit valuation method and is very similar to the level of information required for the valuation of commercial and retail property by the Discounted Cash Flow valuation method. On this basis the valuers specialising in rural valuation practice have the necessary skills and information to value rural properties by an income valuation method, which can focus on the long term environmental and economic sustainability of the property being valued. This paper will review the results of an extensive survey carried out by rural property valuers in Australia, in relation to the impact of farm management on rural property values and sustainable rural land use. A particular focus of the research relates to the increased awareness of the problems of rural land degradation in Australia and the subsequent impact such problems have on the productivity of rural land. These problems of sustainable land use have resulted in the need to develop an approach to rural valuation practice that allows the valuer to factor the past management practices on the subject rural property into the actual valuation figure. An analysis of the past farm management and the inclusion of this data into the valuation methodology provides a much more reliable indication of farm sustainable economic value than the existing direct comparison valuation methodology.
Resumo:
Despite the advances that have been made in relation to the valuation of Commercial, Industrial and retail property, there has not been the same progress in relation to the valuation of rural property. Although number of rural property valuations also require the valuer to carry out a full analysis of the economic performance of the farming operations, as well as the long term environmental viability of the farm, this information is rarely used to assess the value of the property, nor is it even used for a secondary valuation method. Over the past 20 years the nature of rural valuation practice has required most rural valuers to undertake studies in both agriculture (farm management) and valuation, especially if carrying out valuation work for financial institutions. The additional farm financial and management information obtained by rural valuers exceeds that level of information required to value commercial, retail and industrial by the capitalisation of net rent/profit valuation method and is very similar to the level of information required for the valuation of commercial and retail property by the Discounted Cash Flow valuation method. On this basis the valuers specialising in rural valuation practice have the necessary skills and information to value rural properties by an income valuation method. Although the direct comparison method of valuation has been sufficient in the past to value rural properties the future use of the method as the main valuation method is limited and valuers need to adopt an income valuation method as at least a secondary valuation method to overcome the problems associated with the use of direct comparison as the only rural property valuation method, especially in view of the impact that farm technical, financial and environmental .management can have on rural property values. This paper will review the results of an extensive survey carried out by rural property valuers and agribusiness managers in NSW, in relation to the impact of farm management on rural property values and rural property valuation practice.
Resumo:
Aims: To assess the effectiveness of current treatment approaches to assist benzodiazepine discontinuation. Methods: A systematic review of approaches to benzodiazepine discontinuation in general practice and out-patient settings was undertaken. Routine care was compared with three treatment approaches: brief interventions, gradual dose reduction (GDR) and psychological interventions. GDR was compared with GDR plus psychological interventions or substitutive pharmacotherapies. Results: Inclusion criteria were met by 24 studies, and a further eight were identified by future search. GDR [odds ratio (OR) = 5.96, confidence interval (CI) = 2.08–17.11] and brief interventions (OR = 4.37, CI = 2.28–8.40) provided superior cessation rates at post-treatment to routine care. Psychological treatment plus GDR were superior to both routine care (OR = 3.38, CI = 1.86–6.12) and GDR alone (OR = 1.82, CI = 1.25–2.67). However, substitutive pharmacotherapies did not add to the impact of GDR (OR = 1.30, CI = 0.97– 1.73), and abrupt substitution of benzodiazepines by other pharmacotherapy was less effective than GDR alone (OR = 0.30, CI = 0.14–0.64). Few studies on any technique had significantly greater benzodiazepine discontinuation than controls at follow-up. Conclusions: Providing an intervention is more effective than routine care. Psychological interventions may improve discontinuation above GDR alone. While some substitutive pharmacotherapies may have promise, current evidence is insufficient to support their use.
Resumo:
Presentation provided to a PhD Colloquium between two Australian and one Malaysian University providing the opportunity to inform and critique progress of students concerning their selected topic. This presentation essentially involves "The conceptualisation, sensitivity and measurement of holding costs and other selected elements impacting housing affordability" as provided by Gary Owen Garner of QUT, with research objectives thus: 1. To establish the nature and composition of holding costs over time, as related to residential property in Australia, and internationally. 2. To examine the linkages that may exist between various planning instruments, the length of regulatory assessment periods, and housing affordability. 3. To develop a model that quantifies the impact of holding costs on housing affordability in Australia, with a particular focus on the consequences of extended assessment periods as a component of holding costs. Thus, provide clarification as to the impact of holding costs on overall housing affordability.
Resumo:
While the studio is widely accepted as the learning environment where architecture students most effectively learn how to design (Mahgoub, 2007:195), there are surprisingly few studies that attempt to identify in a qualitative way the interrelated factors that contribute to and support design studio learning (Bose, 2007:131). Such a situation seems problematic given the changes and challenges facing education including design education. Overall, there is growing support for re-examining (perhaps redefining) the design studio particularly in response to the impact of new technologies but as this paper argues this should not occur independently of the other elements and qualities comprising the design studio. In this respect, this paper describes a framework developed for a doctoral project concerned with capturing and more holistically understanding the complexity and potential of the design studio to operate within an increasingly and largely unpredictable global context. Integral to this is a comparative analysis of selected cases underpinned by grounded theory methodology of the traditional design studio and the virtual design studio informed by emerging pedagogical theory and the experiences of those most intimately involved – students and lecturers. In addition to providing a conceptual model for future research, the framework is of value to educators currently interested in developing as well as evaluating learning environments for design.
Resumo:
Study Design: Biomechanical testing of vertebral body screw pullout resistance with relevance to top screw pullout in endoscopic anterior scoliosis constructs. Objectives: To analyse the effect of screw positioning and angulation on pullout resistance of vertebral body screws, where the pullout takes place along a curved path as occurs in anterior scoliosis constructs. Summary of Background Data: Top screw pullout is a significant clinical problem in endoscopic anterior scoliosis surgery, with rates of up to 18% reported in the literature. Methods: A custom designed biomechanical test rig was used to perform pullout tests of Medtronic anterior vertebral screws where the pullout occurred along an arc of known radius. Using synthetic bone blocks, a range of pullout radii and screw angulations were tested, in order to determine an ‘optimal’ configuration. The optimal configuration was then compared with standard screw positioning using a series of tests on ovine vertebrae (n=29). Results: Screw angulation has a small but significant effect on pullout resistance, with maximum strength being achieved at 10 degree cephalad angulation. Combining 10 degree cephalad angulation with maximal spacing between the top two screws (maximum pullout radius) increased the pullout resistance by 88% compared to ‘standard’ screw positioning (screws inserted perpendicular to rod at mid-body height). Conclusions: The positioning of the top screw in anterior scoliosis constructs can significantly alter its pullout resistance.
Resumo:
The radiation chemistry and the grafting of a fluoropolymer, poly(tetrafluoroethylene-coperfluoropropyl vinyl ether) (PFA), was investigated with the aim of developing a highly stable grafted support for use in solid phase organic chemistry (SPOC). A radiation-induced grafting method was used whereby the PFA was exposed to ionizing radiation to form free radicals capable of initiating graft copolymerization of styrene. To fully investigate this process, both the radiation chemistry of PFA and the grafting of styrene to PFA were examined. Radiation alone was found to have a detrimental effect on PFA when irradiated at 303 K. This was evident from the loss in the mechanical properties due to chain scission reactions. This meant that when radiation was used for the grafting reactions, the total radiation dose needed to be kept as low as possible. The radicals produced when PFA was exposed to radiation were examined using electron spin resonance spectroscopy. Both main-chain (–CF2–C.F–CF2-) and end-chain (–CF2–C.F2) radicals were identified. The stability of the majority of the main-chain radicals when the polymer was heated above the glass transition temperature suggested that they were present mainly in the crystalline regions of the polymer, while the end-chain radicals were predominately located in the amorphous regions. The radical yield at 77 K was lower than the radical yield at 303 K suggesting that cage recombination at low temperatures inhibited free radicals from stabilizing. High-speed MAS 19F NMR was used to identify the non-volatile products after irradiation of PFA over a wide temperature range. The major products observed over the irradiation temperature 303 to 633 K included new saturated chain ends, short fluoromethyl side chains in both the amorphous and crystalline regions, and long branch points. The proportion of the radiolytic products shifted from mainly chain scission products at low irradiation temperatures to extensive branching at higher irradiation temperatures. Calculations of G values revealed that net crosslinking only occurred when PFA was irradiated in the melt. Minor products after irradiation at elevated temperatures included internal and terminal double bonds and CF3 groups adjacent to double bonds. The volatile products after irradiation at 303 K included tetrafluoromethane (CF4) and oxygen-containing species from loss of the perfluoropropyl ether side chains of PFA as identified by mass spectrometry and FTIR spectroscopy. The chemical changes induced by radiation exposure were accompanied by changes in the thermal properties of the polymer. Changes in the crystallinity and thermal stability of PFA after irradiation were examined using DSC and TGA techniques. The equilibrium melting temperature of untreated PFA was 599 K as determined using a method of extrapolation of the melting temperatures of imperfectly formed crystals. After low temperature irradiation, radiation- induced crystallization was prevalent due to scission of strained tie molecules, loss of perfluoropropyl ether side chains, and lowering of the molecular weight which promoted chain alignment and hence higher crystallinity. After irradiation at high temperatures, the presence of short and long branches hindered crystallization, lowering the overall crystallinity. The thermal stability of the PFA decreased with increasing radiation dose and temperature due to the introduction of defect groups. Styrene was graft copolymerized to PFA using -radiation as the initiation source with the aim of preparing a graft copolymer suitable as a support for SPOC. Various grafting conditions were studied, such as the total dose, dose rate, solvent effects and addition of nitroxides to create “living” graft chains. The effect of dose rate was examined when grafting styrene vapour to PFA using the simultaneous grafting method. The initial rate of grafting was found to be independent of the dose rate which implied that the reaction was diffusion controlled. When the styrene was dissolved in various solvents for the grafting reaction, the graft yield was strongly dependent of the type and concentration of the solvent used. The greatest graft yield was observed when the solvent swelled the grafted layers and the substrate. Microprobe Raman spectroscopy was used to map the penetration of the graft into the substrate. The grafted layer was found to contain both poly(styrene) (PS) and PFA and became thicker with increasing radiation dose and graft yield which showed that grafting began at the surface and progressively penetrated the substrate as the grafted layer was swollen. The molecular weight of the grafted PS was estimated by measuring the molecular weight of the non-covalently bonded homopolymer formed in the grafted layers using SEC. The molecular weight of the occluded homopolymer was an order of magnitude greater than the free homopolymer formed in the surrounding solution suggesting that the high viscosity in the grafted regions led to long PS grafts. When a nitroxide mediated free radical polymerization was used, grafting occurred within the substrate and not on the surface due to diffusion of styrene into the substrate at the high temperatures needed for the reaction to proceed. Loading tests were used to measure the capacity of the PS graft to be functionialized with aminomethyl groups then further derivatized. These loading tests showed that samples grafted in a solution of styrene and methanol had superior loading capacity over samples graft using other solvents due to the shallow penetration and hence better accessibility of the graft when methanol was used as a solvent.
Resumo:
Existing literature has failed to find robust relationships between individual differences and the ability to fake psychological tests, possibly due to limitations in how successful faking is operationalised. In order to fake, individuals must alter their original profile to create a particular impression. Currently, successful faking is operationalised through statistical definitions, informant ratings, known groups comparisons, the use of archival and baseline data, and breaches of validity indexes. However, there are many methodological limitations to these approaches. This research proposed a three component model of successful faking to address this, where an original response is manipulated into a strategic response, which must match a criteria target. Further, by operationalising successful faking in this manner, this research takes into account the fact that individuals may have been successful in reaching their implicitly created profile, but that this may not have matched the criteria they were instructed to fake.Participants (N=48, 22 students and 26 non-students) completed the BDI-II honestly. Participants then faked the BDI-II as if they had no, mild, moderate and severe depression, as well as completing a checklist revealing which symptoms they thought indicated each level of depression. Findings were consistent with a three component model of successful faking, where individuals effectively changed their profile to what they believed was required, however this profile differed from the criteria defined by the psychometric norms of the test.One of the foremost issues for research in this area is the inconsistent manner in which successful faking is operationalised. This research allowed successful faking to be operationalised in an objective, quantifiable manner. Using this model as a template may allow researchers better understanding of the processes involved in faking, including the role of strategies and abilities in determining the outcome of test dissimulation.
Resumo:
Schizophrenia can be a very disabling illness that affects between 0.5% and 1% of the population. This illness has a great personal impact on the individual sufferer, their family and friends. In addition, it makes significant demands on health services and the community in general. This paper reviews the literature on housing and supportive relationships for people with schizophrenia. The literature reports that people's experience of their schizophrenia is that it not only causes symptoms, but often impacts on their ability to maintain the basic resources in life. These resources include the ability to maintain reasonable quality housing, which seems to further impact negatively on their illness and their ability to maintain supportive social relationships. People with schizophrenia (and people in general) rely on their social relationships and family to maintain their mental health. The loss of social relationships and inability to maintain quality housing seem to be related - if people cannot maintain quality housing, they find it difficult to maintain supportive social relationships.
Resumo:
The need to better understand and deal with workplace stress has major implications for the construction industry, especially on a project level, because of its potential to directly impact on site productivity and safety, and ultimately, the achievement of project objectives. While there has been some understanding of the effect of workplace stress within the construction industry, the majority of these studies have explored individual determinants of workplace stress among construction professionals such as architects, engineers, quantity surveyors etc. To date, very little research has focused on workplace stress as encountered by construction site operatives. This is an important research deficiency as construction site operatives typically make up a significant percentage of on-site workforce and contribute most directly to project success. To address this imbalance in research, this paper proposes a theoretical framework to better understand site operatives’ experience of stress from a cultural perspective on three levels: individual, project and organizational which has been largely neglected in previous studies.
Resumo:
There is a growing body of work that responds to the impact of the rapid uptake of information and communication technology (ICT) on education (Buckingham, 2003; Cheung, 2003; Cuban, 2003; Leung, 2003; Prensky, 2005; Green & Hannon, 2007; Brooks-Gunn & Donahue, 2008; Lyman et al, 2008). Mostly, this work has been positioned in the context of upper-primary or secondary classrooms. More recently, there has been a growing call for research about the impact of ICT on the early years or in early childhood contexts. This text initiates a response to that call. The authors concur that today’s children are a generation who create, learn, work, play and communicate very differently from their parents and teachers (Buckingham, 2003), and that classroom activity needs to reflect this difference.
Resumo:
Insulated rail joints (IRJs) possess lower bending stiffness across the gap containing insulating endpost and hence are subjected to wheel impact. IRJs are either square cut or inclined cut to the longitudinal axis of the rails in a vertical plane. It is generally claimed that the inclined cut IRJs outperformed the square cut IRJs; however, there is a paucity of literature with regard to the relative structural merits of these two designs. This article presents comparative studies of the structural response of these two IRJs to the passage of wheels based on continuously acquired field data from joints strain-gauged closer to the source of impact. Strain signatures are presented in time, frequency, and avelet domains and the peak vertical and shear strains are systematically employed to examine the relative structural merits of the two IRJs subjected to similar real-life loading. It is shown that the inclined IRJs resist the wheel load with higher peak shear strains and lower peak vertical strains than that of the square IRJs.