287 resultados para RADIATION DOSE UNITS
Resumo:
The mineral lewisite, (Ca,Fe,Na)2(Sb,Ti)2O6(O,OH)7 an antimony bearing mineral has been studied by Raman spectroscopy. A comparison is made with the Raman spectra of other minerals including bindheimite, stibiconite and roméite. The mineral lewisite is characterised by an intense sharp band at 517 cm-1 with a shoulder at 507 cm-1 assigned to SbO stretching modes. Raman bands of medium intensity for lewisite are observed at 300, 356 and 400 cm-1. These bands are attributed to OSbO bending vibrations. Raman bands in the OH stretching region are observed at 3200, 3328, 3471 cm-1 with a distinct shoulder at 3542 cm-1. The latter is assigned to the stretching vibration of OH units. The first three bands are attributed to water stretching vibrations. The observation of bands in the 3200 to 3500 cm-1 region suggests that water is involved in the lewisite structure. If this is the case then the formula may be better written as Ca, Fe2+, Na)2(Sb, Ti)2(O,OH)7 •xH2O.
Resumo:
Raman spectra of antimonate mineral brizziite NaSbO3 were studied and related to the structure of the mineral. Two sharp bands at 617 and 660 cm-1 are attributed to the SbO3- symmetric stretching mode. The reason for two symmetric stretching vibrations depends upon the bonding of the SbO3- units. The band at 617 cm-1 is assigned to bonding through the Sb and the 660 cm-1 to bonding through the oxygen. The low intensity band at 508 cm-1 is ascribed to the SbO antisymmetric stretching vibration. Low intensity bands were found at 503, 526 and 578 cm-1. Sharp Raman bands observed at 204, 230, 307 and 315 cm-1are assigned to OSbO bending modes. Raman spectroscopy enables a better understanding of the molecular structure of the mineral brizziite.
Resumo:
This paper presents a high voltage pulsed power system based on low voltage switch-capacitor units connected to a current source for several applications such as plasma systems. A buck-boost converter topology is used to utilize the current source and a series of low voltage switch-capacitor units is connected to the current source in order to provide high voltage with high voltage stress (dv/dt) as demanded by loads. This pulsed power converter is flexible in terms of energy control, in that the stored energy in the current source can be adjusted by changing the current magnitude to significantly improve the efficiency of various systems with different requirements. Output voltage magnitude and stress (dv/dt) can be controlled by a proper selection of components and control algorithm to turn on and off switching devices.
Resumo:
Principal Topic: There is increasing recognition that the organizational configurations of corporate venture units should depend on the types of ventures the unit seeks to develop (Burgelman, 1984; Hill and Birkinshaw, 2008). Distinction have been made between internal and external as well as exploitative versus explorative ventures (Hill and Birkinshaw, 2008; Narayan et al., 2009; Schildt et al., 2005). Assuming that firms do not want to limit themselves to a single type of venture, but rather employ a portfolio of ventures, the logical consequence is that firms should employ multiple corporate venture units. Each venture unit tailor-made for the type of venture it seeks to develop. Surprisingly, there is limited attention in the literature for the challenges of managing multiple corporate venture units in a single firm. Maintaining multiple venture units within one firm provides easier access to funding for new ideas (Hamel, 1999). It allows for freedom and flexibility to tie the organizational systems (Rice et al., 2000), autonomy (Hill and Rothaermel, 2003), and involvement of management (Day, 1994; Wadwha and Kotha, 2006) to the requirements of the individual ventures. Yet, the strategic objectives of a venture may change when uncertainty around the venture is resolved (Burgelman, 1984). For example, firms may decide to spin-in external ventures (Chesbrough, 2002) or spun-out ventures that prove strategically unimportant (Burgelman, 1984). This suggests that ventures might need to be transferred between venture units, e.g. from a more internally-driven corporate venture division to a corporate venture capital unit. Several studies suggested that ventures require different managerial skills across their phase of development (Desouza et al., 2007; O'Connor and Ayers, 2005; Kazanjian and Drazin, 1990; Westerman et al., 2006). To facilitate effective transfer between venture units and manage the overall venturing process, it is important that firms set up and manage integrative linkages. Integrative linkages provide synergies and coordination between differentiated units (Lawrence and Lorsch, 1967). Prior findings pointed to the important role of senior management (Westerman et al., 2006; Gilbert, 2006) and a shared organizational vision (Burgers et al., 2009) to coordinate venture units with mainstream businesses. We will draw on these literatures to investigate the key question of how to integratively manage multiple venture units. ---------- Methodology/Key Propositions: In order to seek an answer to the research question, we employ a case study approach that provides unique insights into how firms can break up their venturing process. We selected three Fortune 500 companies that employ multiple venturing units, IBM, Royal Dutch/ Shell and Nokia, and investigated and compared their approaches. It was important that the case companies somewhat differed in the type of venture units they employed as well as the way they integrate and coordinate their venture units. The data are based on extensive interviews and a variety of internal and external company documents to triangulate our findings (Eisenhardt, 1989). The key proposition of the article is that firms can best manage their multiple venture units through an ambidextrous design of loosely coupled units. This provides venture units with sufficient flexibility to employ organizational configurations that best support the type of venture they seek to develop, as well as provides sufficient integration to facilitate smooth transfer of ventures between venture units. Based on the case findings, we develop a generic framework for a new way of managing the venturing process through multiple corporate venture units. ---------- Results and Implications: One of our main findings is that these firms tend to organize their venture units according to phases in the venture development process. That is, they tend to have venture units aimed at incubation of venture ideas as well as units aimed more at the commercialization of ventures into a new business unit for the firm or a start-up. The companies in our case studies tended to coordinate venture units through integrative management skills or a coordinative venture unit that spanned multiple phases. We believe this paper makes two significant contributions. First, we extend prior venturing literature by addressing how firms manage a portfolio of venture units, each achieving different strategic objectives. Second, our framework provides recommendations on how firms should manage such an approach towards venturing. This helps to increase the likelihood of success of their venturing programs.
Resumo:
To assess the effects of any interventions which aim to prevent or manage radiation-induced skin reactions in people with cancer.
Resumo:
Adolescent Idiopathic Scoliosis (AIS) has been associated with reduced pulmonary function believed to be due to a restriction of lung volume by the deformed thoracic cavity. A recent study by our group examined the changes in lung volume pre and post anterior thoracoscopic scoliosis correction using pulmonary function testing (1), however the anatomical changes in ribcage shape and left/right lung volume after thoracoscopic surgery which govern overall respiratory capacity are unknown. The aim of this study was to use 3D rendering from CT scan data to compare lung and ribcage anatomical changes from pre to two years post thoracoscopic anterior scoliosis correction. The study concluded that 3D volumetric reconstruction from CT scans is a powerful means of evaluating changes in pulmonary and thoracic anatomy following surgical AIS correction. Most likely, lung volume changes following thoracoscopic scoliosis correction are multifactorial and affected by changes in height (due to residual growth), ribcage shape, diaphragm positioning, Cobb angle correction in the thoracic spine. Further analysis of the 3D reconstructions will be performed to assess how each of these factors affect lung volume in this patient cohort.
Resumo:
Films of piezoelectric PVDF and P(VDF-TrFE) were exposed to vacuum UV (115-300 nm VUV) and -radiation to investigate how these two forms of radiation affect the chemical, morphological, and piezoelectric properties of the polymers. The extent of crosslinking was almost identical in both polymers after -irradiation, but surprisingly, was significantly higher for the TrFE copolymer after VUV-irradiation. Changes in the melting behavior were also more significant in the TrFE copolymer after VUV-irradiation due to both surface and bulk crosslinking, compared with only surface crosslinking for the PVDF films. The piezoelectric properties (measured using d33 piezoelectric coefficients and D-E hysteresis loops) were unchanged in the PVDF homopolymer, while the TrFE copolymer exhibited more narrow D-E loops after exposure to either - or VUV-radiation. The more severe damage to the TrFE copolymer in comparison with the PVDF homopolymer after VUV-irradiation is explained by different energy deposition characteristics. The short wavelength, highly energetic photons are undoubtedly absorbed in the surface layers of both polymers, and we propose that while the longer wavelength components of the VUV-radiation are absorbed by the bulk of the TrFE copolymer causing crosslinking, they are transmitted harmlessly in the PVDF homopolymer.
Resumo:
Poly(vinylidene fluoride) and copolymers of vinylidene fluoride with hexafluoropropylene, trifluoroethylene and chlorotrifluoroethylene have been exposed to gamma irradiation in vacuum, up to doses of 1MGy under identical conditions, to obtain a ranking of radiation sensitivities. Changes in the tensile properties, crystalline melting points,heats of fusion, gel contents and solvent uptake factors were used as the defining parameters. The initial degree of crystallinity and film processing had the greatest influence on relative radiation damage, although the cross-linked network features were almost identical in their solvent swelling characteristics, regardless of the comonomer composition or content.
Resumo:
Poly(tetrafluoroethylene-co-perfluoropropyl vinyl ether) (PFA) with 2 mol% perfluoropropyl vinyl ether (PPVE) was exposed to γ-irradiation in vacuum at both 77 K and room temperature and the ESR spectra recorded. Both the main chain, CF2–C.F–CF2, and end chain, CF2C.F2 radicals were identified at both temperatures and their thermal stabilities measured. No radicals unique to the radiolytic cleavage at the PPVE units were observed at room temperature, either due to the low concentration of the comonomer or β-scission to form a chain end radical and a non-radical species. G-values for radical formation at room temperature and 77 K were found to be 0.93 and 0.16, respectively.