69 resultados para Quartz tungsten halogen


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reports the development of nanoporous tungsten trioxide (WO3) Schottky diode-based gas sensors. Nanoporous WO3 films were prepared by anodic oxidation of tungsten foil in ethylene glycol mixed with ammonium fluoride and a small amount of water. Anodization resulted in highly ordered WO3 films with a large surface-to-volume ratio. Utilizing these nanoporous structures, Schottky diode-based gas sensors were developed by depositing a platinum (Pt) catalytic contact and tested towards hydrogen gas and ethanol vapour. Analysis of the current–voltage characteristics and dynamic responses of the sensors indicated that these devices exhibited a larger voltage shift in the presence of hydrogen gas compared to ethanol vapour at an optimum operating temperature of 200 °C. The gas sensing mechanism was discussed, associating the response to the intercalating H+ species that are generated as a result of hydrogen and ethanol molecule breakdowns onto the Pt/WO3 contact and their spill over into nanoporous WO3.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The largest Neoarchean gold deposits in the world-class St Ives Goldfield, Western Australia, occur in an area known as the Argo-Junction region (e.g. Junction, Argo and Athena). Why this region is so well endowed with large deposits compared with other parts of the St Ives Goldfield is currently unclear, because gold deposits at St Ives are hosted by a variety of lithologic units and were formed during at least three different deformational events. This paper presents an investigation into the stratigraphic architecture and evolution of the Argo-Junction region to assess its implications for gold metallogenesis. The results show that the region's stratigraphy may be subdivided into five regionally correlatable packages: mafic lavas of the Paringa Basalt; contemporaneously resedimented feldspar-rich pyroclastic debris of the Early Black Flag Group; coarse polymictic volcanic debris of the Late Black Flag Group; thick piles of mafic lavas and sub-volcanic sills of the Athena Basalt and Condenser Dolerite; and the voluminous quartz-rich sedimentary successions of the Early Merougil Group. In the Argo-Junction region, these units have an interpreted maximum thickness of at least 7,130 m, and thus represent an unusually thick accumulation of the Neoarchean volcano-sedimentary successions. It is postulated that major basin-forming structures that were active during deposition and emplacement of the voluminous successions later acted as important conduits during mineralisation. Therefore, a correlation exists between the location of the largest gold deposits in the St Ives Goldfield and the thickest parts of the stratigraphy. Recognition of this association has important implications for camp-scale exploration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The phase relations have been investigated experimentally at 200 and 500 MPa as a function of water activity for one of the least evolved (Indian Batt Rhyolite) and of a more evolved rhyolite composition (Cougar Point Tuff XV) from the 12·8-8·1 Ma Bruneau-Jarbidge eruptive center of the Yellowstone hotspot. Particular priority was given to accurate determination of the water content of the quenched glasses using infrared spectroscopic techniques. Comparison of the composition of natural and experimentally synthesized phases confirms that high temperatures (>900°C) and extremely low melt water contents (<1·5 wt % H₂O) are required to reproduce the natural mineral assemblages. In melts containing 0·5-1·5 wt % H₂O, the liquidus phase is clinopyroxene (excluding Fe-Ti oxides, which are strongly dependent on fO₂), and the liquidus temperature of the more evolved Cougar Point Tuff sample (BJR; 940-1000°C) is at least 30°C lower than that of the Indian Batt Rhyolite lava sample (IBR2; 970-1030°C). For the composition BJR, the comparison of the compositions of the natural and experimental glasses indicates a pre-eruptive temperature of at least 900°C. The composition of clinopyroxene and pigeonite pairs can be reproduced only for water contents below 1·5 wt % H₂O at 900°C, or lower water contents if the temperature is higher. For the composition IBR2, a minimum temperature of 920°C is necessary to reproduce the main phases at 200 and 500 MPa. At 200 MPa, the pre-eruptive water content of the melt is constrained in the range 0·7-1·3 wt % at 950°C and 0·3-1·0 wt % at 1000°C. At 500 MPa, the pre-eruptive temperatures are slightly higher (by 30-50°C) for the same ranges of water concentration. The experimental results are used to explore possible proxies to constrain the depth of magma storage. The crystallization sequence of tectosilicates is strongly dependent on pressure between 200 and 500 MPa. In addition, the normative Qtz-Ab-Or contents of glasses quenched from melts coexisting with quartz, sanidine and plagioclase depend on pressure and melt water content, assuming that the normative Qtz and Ab/Or content of such melts is mainly dependent on pressure and water activity, respectively. The combination of results from the phase equilibria and from the composition of glasses indicates that the depth of magma storage for the IBR2 and BJR compositions may be in the range 300-400 MPa (13 km) and 200-300 MPa (10 km), respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents the fabrication and study of a Schottky diode based on Pt/WO3 nanoplatelet/SiC for H2 gas sensing applications. The nanostructured WO3 films were synthesized from tungsten (sputtered on SiC) via an acidetching method using a 1.5 M HNO3 solution. Scanning electron microscopy of the developed films revealed platelet crystals with thicknesses in the order of 20-60 nm and lengths between 100-700 nm. The current-voltage characteristic and dynamic response of the diodes were measured in the presence of air and 1% H2 gas balanced in air from 25 to 300°C. Upon exposure to 1% H2, voltage shifts of 0.64, 0.93 and 1.14 V were recorded at temperatures of 120, 200 and 300°C, respectively at a constant forward bias current of 500 μA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Highly efficient loading of bone morphogenetic protein-2 (BMP-2) onto carriers with desirable performance is still a major challenge in the field of bone regeneration. Till now, the nanoscaled surface-induced changes of the structure and bioactivity of BMP-2 remains poorly understood. Here, the effect of nanoscaled surface on the adsorption and bioactivity of BMP-2 was investigated with a series of hydroxyapatite surfaces (HAPs): HAP crystal-coated surface (HAP), HAP crystal-coated polished surface (HAP-Pol), and sintered HAP crystal-coated surface (HAP-Sin). The adsorption dynamics of recombinant human BMP-2 (rhBMP-2) and the accessibility of the binding epitopes of adsorbed rhBMP-2 for BMP receptors (BMPRs) were examined by a quartz crystal microbalance with dissipation. Moreover, the bioactivity of adsorbed rhBMP-2 and the BMP-induced Smad signaling were investigated with C2C12 model cells. A noticeably high mass-uptake of rhBMP-2 and enhanced recognition of BMPR-IA to adsorbed rhBMP-2 were found on the HAP-Pol surface. For the rhBMP-2-adsorbed HAPs, both ALP activity and Smad signaling increased in the order of HAP-Sin < HAP < HAP-Pol. Furthermore, hybrid molecular dynamics and steered molecular dynamics simulations validated that BMP-2 tightly anchored on the HAP-Pol surface with a relative loosened conformation, but the HAP-Sin surface induced a compact conformation of BMP-2. In conclusion, the nanostructured HAPs can modulate the way of adsorption of rhBMP-2, and thus the recognition of BMPR-IA and the bioactivity of rhBMP-2. These findings can provide insightful suggestions for the future design and fabrication of rhBMP-2-based scaffolds/implants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this article, we report the crystal structures of five halogen bonded co-crystals comprising quaternary ammonium cations, halide anions (Cl– and Br–), and one of either 1,2-, 1,3-, or 1,4-diiodotetrafluorobenzene (DITFB). Three of the co-crystals are chemical isomers: 1,4-DITFB[TEA-CH2Cl]Cl, 1,2-DITFB[TEA-CH2Cl]Cl, and 1,3-DITFB[TEA-CH2Cl]Cl (where TEA-CH2Cl is chloromethyltriethylammonium ion). In each structure, the chloride anions link DITFB molecules through halogen bonds to produce 1D chains propagating with (a) linear topology in the structure containing 1,4-DITFB, (b) zigzag topology with 60° angle of propagation in that containing 1,2-DITFB, and (c) 120° angle of propagation with 1,3-DITFB. While the individual chains have highly distinctive and different topologies, they combine through π-stacking of the DITFB molecules to produce remarkably similar overall arrangements of molecules. Structures of 1,4-DITFB[TEA-CH2Br]Br and 1,3-DITFB[TEA-CH2Br]Br are also reported and are isomorphous with their chloro/chloride analogues, further illustrating the robustness of the overall supramolecular architecture. The usual approach to crystal engineering is to make structural changes to molecular components to effect specific changes to the resulting crystal structure. The results reported herein encourage pursuit of a somewhat different approach to crystal engineering. That is, to investigate the possibilities for engineering the same overall arrangement of molecules in crystals while employing molecular components that aggregate with entirely different supramolecular connectivity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The p-block semiconductors are regarded as a new family of visible-light photocatalysts because of their dispersive and anisotropic band structures as well as high chemical stability. The bismuth oxide halides belong to this family and have band structures and dispersion relations that can be engineered by modulating the stoichiometry of the halogen elements. Herein, we have developed a new visible-light photocatalyst Bi 24 O 31 Cl 10 by band engineering, which shows high dye-sensitized photocatalytic activity. Density functional theory calculations reveal that the p-block elements determine the nature of the dispersive electronic structures and narrow band gap in Bi 24 O 31 Cl 10. Bi 24 O 31 Cl 10 exhibits excellent visible-light photocatalytic activity towards the degradation of Rhodamine B, which is promoted by dye sensitization due to compatible energy levels and high electronic mobility. In addition, Bi 24 O 31 Cl 10 is also a suitable photoanode material for dye-sensitized solar cells and shows power conversion efficiency of 1.5%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fe-doped tungsten oxide thin films with different concentrations (0 to 2.6 at%) were synthesized on glass and alumina substrates at room temperature using DC reactive sputtering and subsequently annealed at 300oC for 1 hour in air. The alumina substrate has pre-printed interdigitated Pt-electrodes for gas sensing measurements. The effects of Fe-doping on the film structure and morphology, electronic and optical properties for gas sensing were investigated. The grain size of the different films on the alumina and Pt regions of the substrate vary only slightly between 43-57 nm with median size of about 50 nm. Raman spectra showed that the integrated intensity of W=O to O–W–O bands increases with increasing Fe concentrations and this indicated an increase in the number of defects. From XPS the different concentrations of the Fe-doped films were 0.03 at%, 1.33 at% and 2.6 at%. All the films deposited on glass substrate have shown similar visible transmittance (about 70%) but the optical band gap of the pure film decreased form 3.30 eV to 3.15 eV after doping with 2.6 at% Fe. The Fe-doped WO3 film with the highest Fe concentration (2.6 at% Fe) has shown an enhanced gas sensing properties to NO2 at relatively lower operating temperature (150oC) and this can be attributed to the decrease in the optical band gap and an increase in the number of defects compared to the pure WO3 film.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

WO3 nanoplate arrays with (002) oriented facets grown on fluorine doped SnO2 (FTO) glass substrates are tailored by tuning the precursor solution via a facile hydrothermal method. A 2-step hydrothermal method leads to the preferential growth of WO3 film with enriched (002) facets, which exhibits extraordinary photoelectrochemical (PEC) performance with a remarkable photocurrent density of 3.7 mA cm–2 at 1.23 V vs. revisable hydrogen electrode (RHE) under AM 1.5 G illumination without the use of any cocatalyst, corresponding to ~93% of the theoretical photocurrent of WO3. Density functional theory (DFT) calculations together with experimental studies reveal that the enhanced photocatalytic activity and better photo-stability of the WO3 films are attributed to the synergistic effect of highly reactive (002) facet and nanoplate structure which facilitates the photo–induced charge carrier separation and suppresses the formation of peroxo-species. Without the use of oxygen evolution cocatalysts, the excellent PEC performance, demonstrated in this work, by simply tuning crystal facets and nanostructure of pristine WO3 films may open up new opportunities in designing high performance photoanodes for PEC water splitting.