247 resultados para Orbital dynamics


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the embedded atom method (EAM) and molecular dynamics (MD) method, the deformation properties of Cu nanowires with different single defects under dynamic compression have been studied. The mechanical behaviours of the perfect nanowire are first studied, and the critical stress decreases with the increase of the nanowire’s length, which is well agreed with the modified Euler theory. We then consider the effects to the buckling phenomenon resulted from different defects. It is found that obvious decrease of the critical stress is resulted from different defects, and the largest decrease is found in nanowire with the surface vertical defect. Surface defects are found exerting larger influence than internal defects. The buckling duration is found shortened due to different defects except the nanowire with surface horizon defect, which is also found possessing the largest deflection. Different deflections are also observed for different defected nanowires. It is find that due to surface defects, only deflection in one direction is happened, but for internal defects, more complex deflection circumstances are observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a novel method and instrument for in vivo imaging and measurement of the human corneal dynamics during an air puff. The instrument is based on high-speed swept source optical coherence tomography (ssOCT) combined with a custom adapted air puff chamber from a non-contact tonometer, which uses an air stream to deform the cornea in a non-invasive manner. During the short period of time that the deformation takes place, the ssOCT acquires multiple A-scans in time (M-scan) at the center of the air puff, allowing observation of the dynamics of the anterior and posterior corneal surfaces as well as the anterior lens surface. The dynamics of the measurement are driven by the biomechanical properties of the human eye as well as its intraocular pressure. Thus, the analysis of the M-scan may provide useful information about the biomechanical behavior of the anterior segment during the applanation caused by the air puff. An initial set of controlled clinical experiments are shown to comprehend the performance of the instrument and its potential applicability to further understand the eye biomechanics and intraocular pressure measurements. Limitations and possibilities of the new apparatus are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract As regional and continental carbon balances of terrestrial ecosystems become available, it becomes clear that the soils are the largest source of uncertainty. Repeated inventories of soil organic carbon (SOC) organized in soil monitoring networks (SMN) are being implemented in a number of countries. This paper reviews the concepts and design of SMNs in ten countries, and discusses the contribution of such networks to reducing the uncertainty of soil carbon balances. Some SMNs are designed to estimate country-specific land use or management effects on SOC stocks, while others collect soil carbon and ancillary data to provide a nationally consistent assessment of soil carbon condition across the major land-use/soil type combinations. The former use a single sampling campaign of paired sites, while for the latter both systematic (usually grid based) and stratified repeated sampling campaigns (5–10 years interval) are used with densities of one site per 10–1,040 km². For paired sites, multiple samples at each site are taken in order to allow statistical analysis, while for the single sites, composite samples are taken. In both cases, fixed depth increments together with samples for bulk density and stone content are recommended. Samples should be archived to allow for re-measurement purposes using updated techniques. Information on land management, and where possible, land use history should be systematically recorded for each site. A case study of the agricultural frontier in Brazil is presented in which land use effect factors are calculated in order to quantify the CO2 fluxes from national land use/management conversion matrices. Process-based SOC models can be run for the individual points of the SMN, provided detailed land management records are available. These studies are still rare, as most SMNs have been implemented recently or are in progress. Examples from the USA and Belgium show that uncertainties in SOC change range from 1.6–6.5 Mg C ha−1 for the prediction of SOC stock changes on individual sites to 11.72 Mg C ha−1 or 34% of the median SOC change for soil/land use/climate units. For national SOC monitoring, stratified sampling sites appears to be the most straightforward attribution of SOC values to units with similar soil/land use/climate conditions (i.e. a spatially implicit upscaling approach). Keywords Soil monitoring networks - Soil organic carbon - Modeling - Sampling design

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Competitive sailing is characterised by continuous interdependencies of decisions and actions. All actions imply a permanent monitoring of the environmental conditions, such as intensity and direction of the wind, sea characteristics, and the behaviour of the opponent sailors. These constraints on sailors’ behavior are in constant change implying continuous adjustments in sailors’ actions and decisions. Among the different parts of a regatta, tactics and strategy at the start are particularly relevant. Among coaches there is an adage that says that “the start is 50% of a regatta” (Houghton, 1984; Saltonstall, 1983/1986). Olympic sailing regattas are performed with boats of the same class, by one, two or three sailors, depending on the boat class. Normally before the start, sailors visit the racing venue and analyse wind and sea characteristics, in order to fine- tune their boats accordingly. Then, five minutes before the start, sailors initiate starting procedures in order to be in a favourable position at the starting line (at the “second zero”). This position is selected during the start period according to wind shifts tendencies and the actions of other boats (Figure 11.1). Only after the start signal can the boats cross the imaginary starting line between the race committee signal boat “A” and the pin end boat. The start takes place against the wind (upwind), and the boats start racing in the direction of mark 1. Based on the evaluation of the sea and wind characteristics (e.g. if the wind is stronger at a particular place on the course), sailors re- adjust their strategy for the regatta. This strategy may change during the regatta, according to wind changes and adversary actions. More to the point, strategic decisions constrain and are constrained by on- line decisions during the regatta.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This project was a step forward in the examination and identification of key variables on the perception, decision making and action of team sport athletes through theoretical insights provided by the ecological dynamics perspective. The methodology drew on experiential knowledge of elite coaches to drive further empirical investigation into the specific task, environmental and personal constraints that shape the behaviour of athletes in specific performance contexts. The thesis has provided an effective rationale for further investigation into the emergent perception, decision making and action demanded of athletes in these unpredictable, fluent, fast-paced environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are large uncertainties in the aerothermodynamic modelling of super-orbital re-entry which impact the design of spacecraft thermal protection systems (TPS). Aspects of the thermal environment of super-orbital re-entry flows can be simulated in the laboratory using arc- and plasma jet facilities and these devices are regularly used for TPS certification work [5]. Another laboratory device which is capable of simulating certain critical features of both the aero and thermal environment of super-orbital re-entry is the expansion tube, and three such facilities have been operating at the University of Queensland in recent years[10]. Despite some success, wind tunnel tests do not achieve full simulation, however, a virtually complete physical simulation of particular re-entry conditions can be obtained from dedicated flight testing, and the Apollo era FIRE II flight experiment [2] is the premier example which still forms an important benchmark for modern simulations. Dedicated super-orbital flight testing is generally considered too expensive today, and there is a reluctance to incorporate substantial instrumentation for aerothermal diagnostics into existing missions since it may compromise primary mission objectives. An alternative approach to on-board flight measurements, with demonstrated success particularly in the ‘Stardust’ sample return mission, is remote observation of spectral emissions from the capsule and shock layer [8]. JAXA’s ‘Hayabusa’ sample return capsule provides a recent super-orbital reentry example through which we illustrate contributions in three areas: (1) physical simulation of super-orbital re-entry conditions in the laboratory; (2) computational simulation of such flows; and (3) remote acquisition of optical emissions from a super-orbital re entry event.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is well known that track defects cause profound effects to the dynamics of railway wagons; normally such problems are examined for cases of wagons running at a constant speed. Brake/traction torques affect the speed profile due to the wheel–rail contact characteristics but most of the wagon–track interaction models do not explicitly consider them in simulation. The authors have recently published a model for the dynamics of wagons subject to braking traction torques on a perfect track by explicitly considering the pitch degree of freedom for wheelsets. The model is extended for cases of lateral and vertical track geometry defects and worn railhead and wheel profiles. This paper presents the results of the analyses carried out using the model extended to the dynamics of wagons containing less ideal wheel profiles running on tracks with geometry defects and worn rails.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Durland and McCurdy [Durland, J.M., McCurdy, T.H., 1994. Duration-dependent transitions in a Markov model of US GNP growth. Journal of Business and Economic Statistics 12, 279–288] investigated the issue of duration dependence in US business cycle phases using a Markov regime-switching approach, introduced by Hamilton [Hamilton, J., 1989. A new approach to the analysis of time series and the business cycle. Econometrica 57, 357–384] and extended to the case of variable transition parameters by Filardo [Filardo, A.J., 1994. Business cycle phases and their transitional dynamics. Journal of Business and Economic Statistics 12, 299–308]. In Durland and McCurdy’s model duration alone was used as an explanatory variable of the transition probabilities. They found that recessions were duration dependent whilst expansions were not. In this paper, we explicitly incorporate the widely-accepted US business cycle phase change dates as determined by the NBER, and use a state-dependent multinomial Logit modelling framework. The model incorporates both duration and movements in two leading indexes – one designed to have a short lead (SLI) and the other designed to have a longer lead (LLI) – as potential explanatory variables. We find that doing so suggests that current duration is not only a significant determinant of transition out of recessions, but that there is some evidence that it is also weakly significant in the case of expansions. Furthermore, we find that SLI has more informational content for the termination of recessions whilst LLI does so for expansions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous work on pattern-forming dynamics of team sports has investigated sub-phases of basketball and rugby union by focussing on one-versus-one (1v1) attacker-defender dyads. This body of work has identified the role of candidate control parameters, interpersonal distance and relative velocity, in predicting the outcomes of team player interactions. These two control parameters have been described as functioning in a nested relationship where relative velocity between players comes to the fore within a critical range of interpersonal distance. The critical influence of constraints on the intentionality of player behaviour has also been identified through the study of 1v1 attacker-defender dyads. This thesis draws from previous work adopting an ecological dynamics approach, which encompasses both Dynamical Systems Theory and Ecological Psychology concepts, to describe attacker-defender interactions in 1v1 dyads in association football. Twelve male youth association football players (average age 15.3 ± 0.5 yrs) performed as both attackers and defenders in 1v1 dyads in three field positions in an experimental manipulation of the proximity to goal and the role of players. Player and ball motion was tracked using TACTO 8.0 software (Fernandes & Caixinha, 2003) to produce two-dimensional (2D) trajectories of players and the ball on the ground. Significant differences were found for player-to-ball interactions depending on proximity to goal manipulations, indicating how key reference points in the environment such as the location of the goal may act as a constraint that shapes decision-making behaviour. Results also revealed that interpersonal distance and relative velocity alone were insufficient for accurately predicting the outcome of a dyad in association football. Instead, combined values of interpersonal distance, ball-to-defender distance, attacker-to-ball distance, attacker-to-ball relative velocity and relative angles were found to indicate the state of dyad outcomes.