194 resultados para Optimal transportation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In December 2006, the Engineering and Technology Group of Queensland’s Department of Main Roads entered into a three-year skid resistance management research project with QUT Faculty of Built Environment and Engineering researchers and the QUT-based CRC for Integrated Engineering Asset Management (CIEAM). CIEAM undertakes a broad range of asset management research in the areas of defence, utilities, transportation and industrial processes. “The research project is an important activity of Main Roads’ Skid Resistance Management Plan published in June 2006.” said Main Roads project leader Mr Justin Weligamage. “The intended project output is a decision-support model for use by Road Asset Managers throughout a road network. The research objective is to enable road asset managers to better manage the surfacing condition of the road asset with specific focus on skid resistance,” said QUT project leader Professor Arun Kumar. The research project will review existing skid resistance investigatory levels, develop a risk-based method to establish skid resistance investigatory levels and improve the decision support methodology in order to minimise crashes. The new risk-based approach will be used to identify locations on the Queensland state-controlled road network that may have inadequate skid resistance. Once a high risk site is identified, the appropriate remedial action will be decided on. This approach will allow road asset managers to target optimal remedial actions, reducing the incidence and severity of crashes where inadequate skid resistance is a contributing cause.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This current report, It’s About Time: Investing in Transportation to Keep Texas Economically Competitive, updates the February 2009 report by providing an enhanced analysis of the current state of the Texas transportation system, determining the household costs of under-investing in the system and identifying potential revenue options for funding the system. However, the general conclusion has not changed. There are tremendous needs and high costs associated with “doing nothing new.”

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traffic safety in rural highways can be considered as a constant source of concern in many countries. Nowadays, transportation professionals widely use Intelligent Transportation Systems (ITS) to address safety issues. However, compared to metropolitan applications, the rural highway (non-urban) ITS applications are still not well defined. This paper provides a comprehensive review on the existing ITS safety solutions for rural highways. This research is mainly focused on the infrastructure-based control and surveillance ITS technology, such as Crash Prevention and Safety, Road Weather Management and other applications, that is directly related to the reduction of frequency and severity of accidents. The main outcome of this research is the development of a ‘ITS control and surveillance device locating model’ to achieve the maximum safety benefit for rural highways. Using cost and benefits databases of ITS, an integer linear programming method is utilized as an optimization technique to choose the most suitable set of ITS devices. Finally, computational analysis is performed on an existing highway in Iran, to validate the effectiveness of the proposed locating model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research paper aims to develop a method to explore the travel behaviour differences between disadvantaged and non-disadvantaged populations. It also aims to develop a modelling approach or a framework to integrate disadvantage analysis into transportation planning models (TPMs). The methodology employed identifies significantly disadvantaged groups through a cluster analysis and the paper presents a disadvantage-integrated TPM. This model could be useful in determining areas with concentrated disadvantaged population and also developing and formulating relevant disadvantage sensitive policies. (a) For the covering entry of this conference, please see ITRD abstract no. E214666.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the regret of optimal strategies for online convex optimization games. Using von Neumann's minimax theorem, we show that the optimal regret in this adversarial setting is closely related to the behavior of the empirical minimization algorithm in a stochastic process setting: it is equal to the maximum, over joint distributions of the adversary's action sequence, of the difference between a sum of minimal expected losses and the minimal empirical loss. We show that the optimal regret has a natural geometric interpretation, since it can be viewed as the gap in Jensen's inequality for a concave functional--the minimizer over the player's actions of expected loss--defined on a set of probability distributions. We use this expression to obtain upper and lower bounds on the regret of an optimal strategy for a variety of online learning problems. Our method provides upper bounds without the need to construct a learning algorithm; the lower bounds provide explicit optimal strategies for the adversary. Peter L. Bartlett, Alexander Rakhlin

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a comprehensive planning methodology is proposed that can minimize the line loss, maximize the reliability and improve the voltage profile in a distribution network. The injected active and reactive power of Distributed Generators (DG) and the installed capacitor sizes at different buses and for different load levels are optimally controlled. The tap setting of HV/MV transformer along with the line and transformer upgrading is also included in the objective function. A hybrid optimization method, called Hybrid Discrete Particle Swarm Optimization (HDPSO), is introduced to solve this nonlinear and discrete optimization problem. The proposed HDPSO approach is a developed version of DPSO in which the diversity of the optimizing variables is increased using the genetic algorithm operators to avoid trapping in local minima. The objective function is composed of the investment cost of DGs, capacitors, distribution lines and HV/MV transformer, the line loss, and the reliability. All of these elements are converted into genuine dollars. Given this, a single-objective optimization method is sufficient. The bus voltage and the line current as constraints are satisfied during the optimization procedure. The IEEE 18-bus test system is modified and employed to evaluate the proposed algorithm. The results illustrate the unavoidable need for optimal control on the DG active and reactive power and capacitors in distribution networks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper considers an aircraft collision avoidance design problem that also incorporates design of the aircraft’s return-to-course flight. This control design problem is formulated as a non-linear optimal-stopping control problem; a formulation that does not require a prior knowledge of time taken to perform the avoidance and return-to-course manoeuvre. A dynamic programming solution to the avoidance and return-to-course problem is presented, before a Markov chain numerical approximation technique is described. Simulation results are presented that illustrate the proposed collision avoidance and return-to-course flight approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In many prediction problems, including those that arise in computer security and computational finance, the process generating the data is best modelled as an adversary with whom the predictor competes. Even decision problems that are not inherently adversarial can be usefully modeled in this way, since the assumptions are sufficiently weak that effective prediction strategies for adversarial settings are very widely applicable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In many prediction problems, including those that arise in computer security and computational finance, the process generating the data is best modelled as an adversary with whom the predictor competes. Even decision problems that are not inherently adversarial can be usefully modeled in this way, since the assumptions are sufficiently weak that effective prediction strategies for adversarial settings are very widely applicable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A number of learning problems can be cast as an Online Convex Game: on each round, a learner makes a prediction x from a convex set, the environment plays a loss function f, and the learner’s long-term goal is to minimize regret. Algorithms have been proposed by Zinkevich, when f is assumed to be convex, and Hazan et al., when f is assumed to be strongly convex, that have provably low regret. We consider these two settings and analyze such games from a minimax perspective, proving minimax strategies and lower bounds in each case. These results prove that the existing algorithms are essentially optimal.

Relevância:

20.00% 20.00%

Publicador: