292 resultados para Object oriented database
Resumo:
Recent studies have linked the ability of novice (CS1) programmers to read and explain code with their ability to write code. This study extends earlier work by asking CS2 students to explain object-oriented data structures problems that involve recursion. Results show a strong correlation between ability to explain code at an abstract level and performance on code writing and code reading test problems for these object-oriented data structures problems. The authors postulate that there is a common set of skills concerned with reasoning about programs that explains the correlation between writing code and explaining code. The authors suggest that an overly exclusive emphasis on code writing may be detrimental to learning to program. Non-code writing learning activities (e.g., reading and explaining code) are likely to improve student ability to reason about code and, by extension, improve student ability to write code. A judicious mix of code-writing and code-reading activities is recommended.
Resumo:
Although there are many approaches for developing secure programs, they are not necessarily helpful for evaluating the security of a pre-existing program. Software metrics promise an easy way of comparing the relative security of two programs or assessing the security impact of modifications to an existing one. Most studies in this area focus on high level source code but this approach fails to take compiler-specific code generation into account. In this work we describe a set of object-oriented Java bytecode security metrics which are capable of assessing the security of a compiled program from the point of view of potential information flow. These metrics can be used to compare the security of programs or assess the effect of program modifications on security using a tool which we have developed to automatically measure the security of a given Java bytecode program in terms of the accessibility of distinguished ‘classified’ attributes.
Resumo:
In attempting to build intelligent litigation support tools, we have moved beyond first generation, production rule legal expert systems. Our work supplements rule-based reasoning with case based reasoning and intelligent information retrieval. This research, specifies an approach to the case based retrieval problem which relies heavily on an extended object-oriented / rule-based system architecture that is supplemented with causal background information. Machine learning techniques and a distributed agent architecture are used to help simulate the reasoning process of lawyers. In this paper, we outline our implementation of the hybrid IKBALS II Rule Based Reasoning / Case Based Reasoning system. It makes extensive use of an automated case representation editor and background information.
Resumo:
In attempting to build intelligent litigation support tools, we have moved beyond first generation, production rule legal expert systems. Our work integrates rule based and case based reasoning with intelligent information retrieval. When using the case based reasoning methodology, or in our case the specialisation of case based retrieval, we need to be aware of how to retrieve relevant experience. Our research, in the legal domain, specifies an approach to the retrieval problem which relies heavily on an extended object oriented/rule based system architecture that is supplemented with causal background information. We use a distributed agent architecture to help support the reasoning process of lawyers. Our approach to integrating rule based reasoning, case based reasoning and case based retrieval is contrasted to the CABARET and PROLEXS architectures which rely on a centralised blackboard architecture. We discuss in detail how our various cooperating agents interact, and provide examples of the system at work. The IKBALS system uses a specialised induction algorithm to induce rules from cases. These rules are then used as indices during the case based retrieval process. Because we aim to build legal support tools which can be modified to suit various domains rather than single purpose legal expert systems, we focus on principles behind developing legal knowledge based systems. The original domain chosen was theAccident Compensation Act 1989 (Victoria, Australia), which relates to the provision of benefits for employees injured at work. For various reasons, which are indicated in the paper, we changed our domain to that ofCredit Act 1984 (Victoria, Australia). This Act regulates the provision of loans by financial institutions. The rule based part of our system which provides advice on the Credit Act has been commercially developed in conjunction with a legal firm. We indicate how this work has lead to the development of a methodology for constructing rule based legal knowledge based systems. We explain the process of integrating this existing commercial rule based system with the case base reasoning and retrieval architecture.
Resumo:
CAAS is a rule-based expert system, which provides advice on the Victorial Credit Act 1984. It is currently in commercial use, and has been developed in conjunction with a law firm. It uses an object-oriented hybrid reasoning approach. The system was initially prototyped using the expert system shell NExpert Object, and was then converted into the C++ language. In this paper we describe the advantages that this methodology has, for both commercial and research development.
Resumo:
Approaches to art-practice-as-research tend to draw a distinction between the processes of creative practice and scholarly reflection. According to this template, the two sites of activity – studio/desk, work/writing, body/mind – form the ‘correlative’ entity known as research. Creative research is said to be produced by the navigation of world and thought: spaces that exist in a continual state of tension with one another. Either we have the studio tethered to brute reality while the desk floats free as a site for the fluid cross-pollination of texts and concepts. Or alternatively, the studio is characterized by the amorphous, intuitive play of forms and ideas, while the desk represents its cartography, mapping and fixing its various fluidities. In either case, the research status of art practice is figured as a fundamentally riven space. However, the nascent philosophy of Speculative Realism proposes a different ontology – one in which the space of human activity comprises its own reality, independent of human perception. The challenge it poses to traditional metaphysics is to rethink the world as if it were a real space. When applied to practice-led research, this reconceptualization challenges the creative researcher to consider creative research as a contiguous space – a topology where thinking and making are not dichotomous points but inflections in an amorphous and dynamic field. Instead of being subject to the vertical tension between earth and air, a topology of practice emphasizes its encapsulated, undulating reality – an agentive ‘object’ formed according to properties of connectedness, movement and differentiation. Taking the central ideas of Quentin Meillassoux and Graham Harman as a point of departure, this paper will provide a speculative account of the interplay of spatialities that characterise the author’s studio practice. In so doing, the paper will model the innovative methodological potential produced by the analysis of topological dimensions of the studio and the way they can be said to move beyond the ‘geo-critical’ divide.
Resumo:
Conventions of the studio presuppose the artist as the active agent, imposing his/her will upon and through objects that remain essentially inert. However, this characterisation of practice overlooks the complex object dynamics that underpin the art-making process. Far from passive entities, objects are resistant, ‘speaking back’ to the artist, impressing their will upon their surroundings. Objects stick to one another, fall over, drip, spill, spatter and chip one another. Objects support, dismantle, cover and transform one another. Objects are both the apparatus of the studio and its products. It can be argued that the work of art is as much shaped by objects as it is by human impulse. Within this alternate ontology, the artist becomes but one element in a constellation of objects. Drawing upon Graham Harman’s Object-Oriented Ontology and a selection of photographs of my studio processes, this practice-led paper will explore the notion of agentive objects and the ways in which the contemporary art studio can be reconsidered as a primary site for the production of new object relationships.
Resumo:
The first Workshop on Service-Oriented Business Networks and Ecosystems (SOBNE ’09) is held in conjunction with the 13th IEEE International EDOC Conference on 2 September 2009 in Auckland, New Zealand. The SOBNE ’09 program includes 9 peer-reviewed papers (7 full and 2 short papers) and an open discussion session. This introduction to the Proceedings of SOBNE ’09 starts with a brief background of the motivation for the workshop. Next, it contains a short description of the peer-reviewed papers, and finally, after some concluding statements and the announcement of the winners of the Best Reviewer Award and the Most Promising Research Award, it lists the members of the SOBNE ’09 Program Committee and external reviewers of the workshop submissions.
Resumo:
This paper presents an object tracking system that utilises a hybrid multi-layer motion segmentation and optical flow algorithm. While many tracking systems seek to combine multiple modalities such as motion and depth or multiple inputs within a fusion system to improve tracking robustness, current systems have avoided the combination of motion and optical flow. This combination allows the use of multiple modes within the object detection stage. Consequently, different categories of objects, within motion or stationary, can be effectively detected utilising either optical flow, static foreground or active foreground information. The proposed system is evaluated using the ETISEO database and evaluation metrics and compared to a baseline system utilising a single mode foreground segmentation technique. Results demonstrate a significant improvement in tracking results can be made through the incorporation of the additional motion information.
Resumo:
Last year European Intellectual Property Review published an article comparing the latest version of the proposed US database legislation, the Collections of Information Antipiracy Bill with the UK's Copyright and Rights in Database Regulations 1997. Subsequently a new US Bill, the Consumer and Investor Access to Information Act has emerged, the Antipiracy Bill has been amended and much debate has occurred, but the US seems no closer to enacting database legislation. This article briefly outlines the background to the US legislative efforts, examines the two Bills and draws some comparisons with the UK Regulations. A study of the US Bills clearly demonstrates the starkly divided opinion on database protection held by the Bills' proponents and the principal lobby groups driving the legislative efforts: the Antipiracy Bill is very protective of database producers' interests, whereas the Access Bill is heavily user-oriented. If the US experience is any indication there will be a long horizon involved in achieving any consensus on international harmonisation of this difficult area.
Resumo:
Within a surveillance video, occlusions are commonplace, and accurately resolving these occlusions is key when seeking to accurately track objects. The challenge of accurately segmenting objects is further complicated by the fact that within many real-world surveillance environments, the objects appear very similar. For example, footage of pedestrians in a city environment will consist of many people wearing dark suits. In this paper, we propose a novel technique to segment groups and resolve occlusions using optical flow discontinuities. We demonstrate that the ratio of continuous to discontinuous pixels within a region can be used to locate the overlapping edges, and incorporate this into an object tracking framework. Results on a portion of the ETISEO database show that the proposed algorithm results in improved tracking performance overall, and improved tracking within occlusions.
Resumo:
The use of appropriate features to represent an output class or object is critical for all classification problems. In this paper, we propose a biologically inspired object descriptor to represent the spectral-texture patterns of image-objects. The proposed feature descriptor is generated from the pulse spectral frequencies (PSF) of a pulse coupled neural network (PCNN), which is invariant to rotation, translation and small scale changes. The proposed method is first evaluated in a rotation and scale invariant texture classification using USC-SIPI texture database. It is further evaluated in an application of vegetation species classification in power line corridor monitoring using airborne multi-spectral aerial imagery. The results from the two experiments demonstrate that the PSF feature is effective to represent spectral-texture patterns of objects and it shows better results than classic color histogram and texture features.
Resumo:
Understanding the motion characteristics of on-site objects is desirable for the analysis of construction work zones, especially in problems related to safety and productivity studies. This article presents a methodology for rapid object identification and tracking. The proposed methodology contains algorithms for spatial modeling and image matching. A high-frame-rate range sensor was utilized for spatial data acquisition. The experimental results indicated that an occupancy grid spatial modeling algorithm could quickly build a suitable work zone model from the acquired data. The results also showed that an image matching algorithm is able to find the most similar object from a model database and from spatial models obtained from previous scans. It is then possible to use the matched information to successfully identify and track objects.
Resumo:
Recent modelling of socio-economic costs by the Australian railway industry in 2010 has estimated the cost of level crossing accidents to exceed AU$116 million annually. To better understand causal factors that contribute to these accidents, the Cooperative Research Centre for Rail Innovation is running a project entitled Baseline Level Crossing Video. The project aims to improve the recording of level crossing safety data by developing an intelligent system capable of detecting near-miss incidents and capturing quantitative data around these incidents. To detect near-miss events at railway level crossings a video analytics module is being developed to analyse video footage obtained from forward-facing cameras installed on trains. This paper presents a vision base approach for the detection of these near-miss events. The video analytics module is comprised of object detectors and a rail detection algorithm, allowing the distance between a detected object and the rail to be determined. An existing publicly available Histograms of Oriented Gradients (HOG) based object detector algorithm is used to detect various types of vehicles in each video frame. As vehicles are usually seen from a sideway view from the cabin’s perspective, the results of the vehicle detector are verified using an algorithm that can detect the wheels of each detected vehicle. Rail detection is facilitated using a projective transformation of the video, such that the forward-facing view becomes a bird’s eye view. Line Segment Detector is employed as the feature extractor and a sliding window approach is developed to track a pair of rails. Localisation of the vehicles is done by projecting the results of the vehicle and rail detectors on the ground plane allowing the distance between the vehicle and rail to be calculated. The resultant vehicle positions and distance are logged to a database for further analysis. We present preliminary results regarding the performance of a prototype video analytics module on a data set of videos containing more than 30 different railway level crossings. The video data is captured from a journey of a train that has passed through these level crossings.