87 resultados para Numerical One-Loop Integration
Resumo:
Path integration is a process in which observers derive their location by integrating self-motion signals along their locomotion trajectory. Although the medial temporal lobe (MTL) is thought to take part in path integration, the scope of its role for path integration remains unclear. To address this issue, we administered a variety of tasks involving path integration and other related processes to a group of neurosurgical patients whose MTL was unilaterally resected as therapy for epilepsy. These patients were unimpaired relative to neurologically intact controls in many tasks that required integration of various kinds of sensory self-motion information. However, the same patients (especially those who had lesions in the right hemisphere) walked farther than the controls when attempting to walk without vision to a previewed target. Importantly, this task was unique in our test battery in that it allowed participants to form a mental representation of the target location and anticipate their upcoming walking trajectory before they began moving. Thus, these results put forth a new idea that the role of MTL structures for human path integration may stem from their participation in predicting the consequences of one's locomotor actions. The strengths of this new theoretical viewpoint are discussed.
Resumo:
Recent literature on Enterprise System (ES) implementation projects highlights the importance of Knowledge Integration (KI) for implementation success. The fundamental characteristics of ES - integration of modules, business process view, and aspects of information transparency - necessitate that all frequent end-users share a reasonable amount of common knowledge and integrate their knowledge to yield new knowledge. Unfortunately, the importance of KI is often overlooked and little about the role of KI in ES success is known. In this chapter, the authors study the KI impact on ES success that is relevant to the ES post-implementation in support of organizations' returns on their ES investments. They adopt the ES post-implementation segment of ES utilization to explore whether the KI approach is causally linked to ES success. The research model was tested in a multi-industry sample in Malaysia from which data was gathered from managerial and operational employees spread across six large organizations. Consistent with the explanation by knowledge-based theory, the results show that KI was valid and significantly related to the outcome of ES that relates to an organization's performance, which the authors refer to as ES success. The KI positive impact on the success of ES drives one to highlight the importance of ontological KI in the complexity of the ES environment. The authors believe that focusing on an ontology through the KI perspective can make significant contributions to current ES problems.
Resumo:
This paper demonstrates the use of a spreadsheet in exploring non-linear difference equations that describe digital control systems used in radio engineering, communication and computer architecture. These systems, being the focus of intensive studies of mathematicians and engineers over the last 40 years, may exhibit extremely complicated behaviour interpreted in contemporary terms as transition from global asymptotic stability to chaos through period-doubling bifurcations. The authors argue that embedding advanced mathematical ideas in the technological tool enables one to introduce fundamentals of discrete control systems in tertiary curricula without learners having to deal with complex machinery that rigorous mathematical methods of investigation require. In particular, in the appropriately designed spreadsheet environment, one can effectively visualize a qualitative difference in the behviour of systems with different types of non-linear characteristic.
Resumo:
This work presents the details of the numerical model used in simulation of self-organization of nano-islands on solid surfaces in plasma-assisted assembly of quantum dot structures. The model includes the near-substrate non-neutral layer (plasma sheath) and a nanostructured solid deposition surface and accounts for the incoming flux of and energy of ions from the plasma, surface temperature-controlled adatom migration about the surface, adatom collisions with other adatoms and nano-islands, adatom inflow to the growing nano-islands from the plasma and from the two-dimensional vapour on the surface, and particle evaporation to the ambient space and the two-dimensional vapour. The differences in surface concentrations of adatoms in different areas within the quantum dot pattern significantly affect the self-organization of the nano-islands. The model allows one to formulate the conditions when certain islands grow, and certain ones shrink or even dissolve and relate them to the process control parameters. Surface coverage by selforganized quantum dots obtained from numerical simulation appears to be in reasonable agreement with the available experimental results.
Resumo:
Numeric sets can be used to store and distribute important information such as currency exchange rates and stock forecasts. It is useful to watermark such data for proving ownership in case of illegal distribution by someone. This paper analyzes the numerical set watermarking model presented by Sion et. al in “On watermarking numeric sets”, identifies it’s weaknesses, and proposes a novel scheme that overcomes these problems. One of the weaknesses of Sion’s watermarking scheme is the requirement to have a normally-distributed set, which is not true for many numeric sets such as forecast figures. Experiments indicate that the scheme is also susceptible to subset addition and secondary watermarking attacks. The watermarking model we propose can be used for numeric sets with arbitrary distribution. Theoretical analysis and experimental results show that the scheme is strongly resilient against sorting, subset selection, subset addition, distortion, and secondary watermarking attacks.
Resumo:
This paper offers numerical modelling of a waste heat recovery system. A thin layer of metal foam is attached to a cold plate to absorb heat from hot gases leaving the system. The heat transferred from the exhaust gas is then transferred to a cold liquid flowing in a secondary loop. Two different foam PPI (Pores Per Inch) values are examined over a range of fluid velocities. Numerical results are then compared to both experimental data and theoretical results available in the literature. Challenges in getting the simulation results to match those of the experiments are addressed and discussed in detail. In particular, interface boundary conditions specified between a porous layer and a fluid layer are investigated. While physically one expects much lower fluid velocity in the pores compared to that of free flow, capturing this sharp gradient at the interface can add to the difficulties of numerical simulation. The existing models in the literature are modified by considering the pressure gradient inside and outside the foam. Comparisons against the numerical modelling are presented. Finally, based on experimentally-validated numerical results, thermo-hydraulic performance of foam heat exchangers as waste heat recovery units is discussed with the main goal of reducing the excess pressure drop and maximising the amount of heat that can be recovered from the hot gas stream.
Resumo:
Battery-supercapacitor hybrid energy storage systems are becoming popular in the renewable energy sector due to their improved power and energy performances. These hybrid systems require separate dc-dc converters, or at least one dc-dc converter for the supercapacitor bank, to connect them to the dc-link of the grid interfacing inverter. These additional dc-dc converters increase power losses, complexity and cost. Therefore, possibility of their direct connection is investigated in this paper. The inverter system used in this study is formed by cascading two 3-level inverters, named as the “main inverter” and the “auxiliary inverter”, through a coupling transformer. In the test system the main inverter is connected with the rectified output of a wind generator while the auxiliary inverter is directly attached to a battery and a supercapacitor bank. The major issues with this approach are the dynamic changes in dc-link voltages and inevitable imbalances in the auxiliary inverter voltages, which results in unevenly distributed space vectors. A modified SVM technique is proposed to solve this issue. A PWM based time sharing method is proposed for power sharing between the battery and the supercapacitor. Simulation results are presented to verify the efficacy of the proposed modulation and control techniques.
Resumo:
This paper explores the possibility of connecting two Wind Turbine Generators (WTG) to the grid using a single three level inverter. In the proposed system the rectified output of one WTG is connected across the upper dc-link capacitor of a standard diode clamped three level inverter. Similarly the rectified output of the other WTG is connected across the lower capacitor. This particular combination has several advantages such as, direct connection to the grid, reduced parts count, improved reliability and high power capacity. However, the major problem in the proposed system is the imminent imbalance of dc-link voltages. Under such conditions conventional modulation methods fail to produce desired voltage and current waveforms. A detailed analysis on this issue and a novel space vector modulation method, as the solution, are proposed in this paper. To track the Maximum power point of each WTG a power sharing algorithm is proposed. Simulation results are presented to attest the efficacy of the proposed system.
Resumo:
Knowledge Integration (KI) is one of the major aspects driving innovation within an organisation. In this paper, we attempt to develop a better understanding of responses to the challenges of knowledge integration within the innovation process in technology-based firms. Using four technology-based Australian firms, we investigated how knowledge integration may be managed within the context of innovation in technology firms. Previous research highlights the role of four KI tasks that affect the innovation capability within technology-oriented firms, namely team building capability, capturing tacit knowledge, role of Knowledge Management (KM) systems and technological systemic integration. Our findings indicate that in addition to these four tasks, a strategic approach to integrating knowledge for innovation, as well as leadership and management, are essential to achieving effective KI across multiple levels of engagement. Our findings also offer practical insights into how knowledge can be integrated within innovation process, with specific implications for managers.
Resumo:
Path integration is a process with which navigators derive their current position and orientation by integrating self-motion signals along a locomotion trajectory. It has been suggested that path integration becomes disproportionately erroneous when the trajectory crosses itself. However, there is a possibility that this previous finding was confounded by effects of the length of a traveled path and the amount of turns experienced along the path, two factors that are known to affect path integration performance. The present study was designed to investigate whether the crossover of a locomotion trajectory truly increases errors of path integration. In an experiment, blindfolded human navigators were guided along four paths that varied in their lengths and turns, and attempted to walk directly back to the beginning of the paths. Only one of the four paths contained a crossover. Results showed that errors yielded from the path containing the crossover were not always larger than those observed in other paths, and the errors were attributed solely to the effects of longer path lengths or greater degrees of turns. These results demonstrated that path crossover does not always cause significant disruption in path integration processes. Implications of the present findings for models of path integration are discussed.
Resumo:
Discovering the means to prevent and cure schizophrenia is a vision that motivates many scientists. But in order to achieve this goal, we need to understand its neurobiological basis. The emergent metadiscipline of cognitive neuroscience fields an impressive array of tools that can be marshaled towards achieving this goal, including powerful new methods of imaging the brain (both structural and functional) as well as assessments of perceptual and cognitive capacities based on psychophysical procedures, experimental tasks and models developed by cognitive science. We believe that the integration of data from this array of tools offers the greatest possibilities and potential for advancing understanding of the neural basis of not only normal cognition but also the cognitive impairments that are fundamental to schizophrenia. Since sufficient expertise in the application of these tools and methods rarely reside in a single individual, or even a single laboratory, collaboration is a key element in this endeavor. Here, we review some of the products of our integrative efforts in collaboration with our colleagues on the East Coast of Australia and Pacific Rim. This research focuses on the neural basis of executive function deficits and impairments in early auditory processing in patients using various combinations of performance indices (from perceptual and cognitive paradigms), ERPs, fMRI and sMRI. In each case, integration of two or more sources of information provides more information than any one source alone by revealing new insights into structure-function relationships. Furthermore, the addition of other imaging methodologies (such as DTI) and approaches (such as computational models of cognition) offers new horizons in human brain imaging research and in understanding human behavior.
Resumo:
Background: The introduction of Patient Group Directions (PGD) has changed significantly the way in which nurses can now administer prescription only medicines as a one-off for patients requiring this level of service. PGD’s are a written authority to administer drugs to patients that are not identified at the time of treatment. Aim: The aim of this project was to develop a PGD for use within an Outreach team to administer colloid boluses to patients presenting with hypovolemia. Method: Using a case exemplar this paper will discuss the development of a PGD using aspects of transitional change theory to highlight the potential barriers that were encountered. Implications for Practice: The implications for this PGD are wide reaching. First it now enables members from the nursing Outreach team to administer colloid fluid boluses to a prescribed patient cohort without the need for prescription. Second, it ensures the deteriorating patient has interventions initiated in a timely and appropriate manner to reduce inadvertent admission to high care areas. Last, it will improve inter-professional team-working and communication so much so that collaborative patient care reduces health costs and identifies earlier those patients requiring substantially greater nursing and medical input. Conclusion: The experience of developing a working PGD for fluid administration has meant that the Outreach team is able to respond to patients in a more effective way. In addition, it is the experience of developing this PGD that has enabled the team to contemplate other PGD’s in the execution of Outreach work.
Resumo:
This paper presents a layered framework for the purposes of integrating different Socio-Technical Systems (STS) models and perspectives into a whole-of-systems model. Holistic modelling plays a critical role in the engineering of STS due to the interplay between social and technical elements within these systems and resulting emergent behaviour. The framework decomposes STS models into components, where each component is either a static object, dynamic object or behavioural object. Based on existing literature, a classification of the different elements that make up STS, whether it be a social, technical or a natural environment element, is developed; each object can in turn be classified according to the STS elements it represents. Using the proposed framework, it is possible to systematically decompose models to an extent such that points of interface can be identified and the contextual factors required in transforming the component of one model to interface into another is obtained. Using an airport inbound passenger facilitation process as a case study socio-technical system, three different models are analysed: a Business Process Modelling Notation (BPMN) model, Hybrid Queue-based Bayesian Network (HQBN) model and an Agent Based Model (ABM). It is found that the framework enables the modeller to identify non-trivial interface points such as between the spatial interactions of an ABM and the causal reasoning of a HQBN, and between the process activity representation of a BPMN and simulated behavioural performance in a HQBN. Such a framework is a necessary enabler in order to integrate different modelling approaches in understanding and managing STS.
Reactive reaching and grasping on a humanoid: Towards closing the action-perception loop on the iCub
Resumo:
We propose a system incorporating a tight integration between computer vision and robot control modules on a complex, high-DOF humanoid robot. Its functionality is showcased by having our iCub humanoid robot pick-up objects from a table in front of it. An important feature is that the system can avoid obstacles - other objects detected in the visual stream - while reaching for the intended target object. Our integration also allows for non-static environments, i.e. the reaching is adapted on-the-fly from the visual feedback received, e.g. when an obstacle is moved into the trajectory. Furthermore we show that this system can be used both in autonomous and tele-operation scenarios.
Resumo:
Dried plant food materials are one of the major contributors to the global food industry. Widening the fundamental understanding on different mechanisms of food material alterations during drying assists the development of novel dried food products and processing techniques. In this regard, case hardening is an important phenomenon, commonly observed during the drying processes of plant food materials, which significantly influences the product quality and process performance. In this work, a recent meshfree-based numerical model of the authors is further improved and used to simulate the influence of case hardening on shrinkage characteristics of plant tissues during drying. In order to model fluid and wall mechanisms in each cell, Smoothed Particle Hydrodynamics (SPH) and the Discrete Element Method (DEM) are used. The model is fundamentally more capable of simulating large deformation of multiphase materials, when compared with conventional grid-based modelling techniques such as Finite Element Methods (FEM) or Finite Difference Methods (FDM). Case hardening is implemented by maintaining distinct moisture levels in the different cell layers of a given tissue. In order to compare and investigate different factors influencing tissue deformations under case hardening, four different plant tissue varieties (apple, potato, carrot and grape) are studied. The simulation results indicate that the inner cells of any given tissue undergo limited shrinkage and cell wall wrinkling compared to the case hardened outer cell layers of the tissues. When comparing unique deformation characteristics of the different tissues, irrespective of the normalised moisture content, the cell size, cell fluid turgor pressure and cell wall characteristics influence the tissue response to case hardening.