652 resultados para Multi-product bank
Resumo:
Under the Alien Tort Statute United States of America (“America”) Federal Courts have the jurisdiction to hear claims for civil wrongs, committed against non-American citizens, which were perpetrated outside America’s national borders. The operation of this law has confronted American Federal Courts with difficulties on how to manage conflicts between American executive foreign policy and judicial interpretations of international law. Courts began to pass judgment over conduct which was approved by foreign governments. Then in 2005 the American Supreme Court wound back the scope of the Alien Tort Statute. This article will review the problems with the expansion of the Alien Tort Statute and the reasons for its subsequent narrowing.
Resumo:
Worldwide, the current pattern of urban development is unsustainable and metropolitan planning and development strategies deliver poor environmental outcomes in relation to energy production. As a result, an increasing number of governments and private sector development companies are initiating projects that aim to deliver enhanced environmental outcomes rather than a ‘business as usual’ approach. This paper will summarise the findings from a study that explored the link between building orientation and energy efficiencies in sub-tropical and tropical climates. The study used a new thermal modelling software tool developed by CSIRO that responds more accurately to residential heating and cooling energy performance in those climate zones. This software tool responds to industry criticisms regarding cold climate modelling systems that do not make sufficient allowance for natural ventilation. The study examined a range of low, medium and high-density dwelling types and investigated the impact of orientation, insulation, ventilation and shading devices on energy efficiencies. This paper will examine the findings from the medium and high-density case study developments as these are relevant to residential developments in many South East Asian countries, such as Singapore, Hong Kong and Malaysia. Finally, the paper will explore the potential benefits that medium and high-density residential developments have in the development of ‘solar cities’ and ‘solar suburbs’.
Resumo:
The early stages of the building design process are when the most far reaching decisions are made regarding the configuration of the proposed project. This paper examines methods of providing decision support to building designers across multiple disciplines during the early stage of design. The level of detail supported is at the massing study stage where the basic envelope of the project is being defined. The block outlines on the building envelope are sliced into floors. Within a floor the only spatial divisions supported are the “user” space and the building core. The building core includes vertical transportation systems, emergency egress and vertical duct runs. The current focus of the project described in the paper is multi-storey mixed use office/residential buildings with car parking. This is a common type of building in redevelopment projects within and adjacent to the central business districts of major Australian cities. The key design parameters for system selection across the major systems in multi-storey building projects - architectural, structural, HVAC, vertical transportation, electrical distribution, fire protection, hydraulics and cost – are examined. These have been identified through literature research and discussions with building designers from various disciplines. This information is being encoded in decision support tools. The decision support tools communicate through a shared database to ensure that the relevant information is shared across all of the disciplines. An internal data model has been developed to support the very early design phase and the high level system descriptions required. A mapping to IFC 2x2 has also been defined to ensure that this early information is available at later stages of the design process.
Resumo:
This paper aims to develop the methodology and strategy for concurrent finite element modeling of civil infrastructures at the different scale levels for the purposes of analyses of structural deteriorating. The modeling strategy and method were investigated to develop the concurrent multi-scale model of structural behavior (CMSM-of-SB) in which the global structural behavior and nonlinear damage features of local details in a large complicated structure could be concurrently analyzed in order to meet the needs of structural-state evaluation as well as structural deteriorating. In the proposed method, the “large-scale” modeling is adopted for the global structure with linear responses between stress and strain and the “small-scale” modeling is available for nonlinear damage analyses of the local welded details. A longitudinal truss in steel bridge decks was selected as a case to study how a CMSM-of-SB was developed. The reduced-scale specimen of the longitudinal truss was studied in the laboratory to measure its dynamic and static behavior in global truss and local welded details, while the multi-scale models using constraint equations and substructuring were developed for numerical simulation. The comparison of dynamic and static response between the calculated results by different models indicated that the proposed multi-scale model was found to be the most efficient and accurate. The verification of the model with results from the tested truss under the specific loading showed that, responses at the material scale in the vicinity of local details as well as structural global behaviors could be obtained and fit well with the measured results. The proposed concurrent multi-scale modeling strategy and implementation procedures were applied to Runyang cable-stayed bridge (RYCB) and the CMSM-of-SB of the bridge deck system was accordingly constructed as a practical application.
Resumo:
This paper is a continuation of the paper titled “Concurrent multi-scale modeling of civil infrastructure for analyses on structural deteriorating—Part I: Modeling methodology and strategy” with the emphasis on model updating and verification for the developed concurrent multi-scale model. The sensitivity-based parameter updating method was applied and some important issues such as selection of reference data and model parameters, and model updating procedures on the multi-scale model were investigated based on the sensitivity analysis of the selected model parameters. The experimental modal data as well as static response in terms of component nominal stresses and hot-spot stresses at the concerned locations were used for dynamic response- and static response-oriented model updating, respectively. The updated multi-scale model was further verified to act as the baseline model which is assumed to be finite-element model closest to the real situation of the structure available for the subsequent arbitrary numerical simulation. The comparison of dynamic and static responses between the calculated results by the final model and measured data indicated the updating and verification methods applied in this paper are reliable and accurate for the multi-scale model of frame-like structure. The general procedures of multi-scale model updating and verification were finally proposed for nonlinear physical-based modeling of large civil infrastructure, and it was applied to the model verification of a long-span bridge as an actual engineering practice of the proposed procedures.
Resumo:
A study has been conducted to investigate current practices on decision-making under risk and uncertainty for infrastructure project investments. It was found that many European countries such as the UK, France, Germany including Australia use scenarios for the investigation of the effects of risk and uncertainty of project investments. Different alternative scenarios are mostly considered during the engineering economic cost-benefit analysis stage. For instance, the World Bank requires an analysis of risks in all project appraisals. Risk in economic evaluation needs to be addressed by calculating sensitivity of the rate of return for a number of events. Risks and uncertainties of project developments arise from various sources of errors including data, model and forecasting errors. It was found that the most influential factors affecting risk and uncertainty resulted from forecasting errors. Data errors and model errors have trivial effects. It was argued by many analysts that scenarios do not forecast what will happen but scenarios indicate only what can happen from given alternatives. It was suggested that the probability distributions of end-products of the project appraisal, such as cost-benefit ratios that take forecasting errors into account, are feasible decision tools for economic evaluation. Political, social, environmental as well as economic and other related risk issues have been addressed and included in decision-making frameworks, such as in a multi-criteria decisionmaking framework. But no suggestion has been made on how to incorporate risk into the investment decision-making process.
Resumo:
Due to the popularity of modern Collaborative Virtual Environments, there has been a related increase in their size and complexity. Developers therefore need visualisations that expose usage patterns from logged data, to understand the structures and dynamics of these complex environments. This chapter presents a new framework for the process of visualising virtual environment usage data. Major components, such as an event model, designer task model and data acquisition infrastructure are described. Interface and implementation factors are also developed, along with example visualisation techniques that make use of the new task and event model. A case study is performed to illustrate a typical scenario for the framework, and its benefits to the environment development team.
Resumo:
The Multi-outcomes Construction Policies research project, funded by the Cooperative Research Centre for Construction Innovation (Project 2006-036-A), sought to explore the costs and benefits of leveraging social outcomes on public construction contracts. The context of the research project was the trend towards the contracting out of public construction works and the attempts that have been made to use new contractual arrangements with construction companies to construction achieve a wide range of social outcomes. In federal and state jurisdictions it is now common for governments to impose a range of additional requirements on public works contractors that relate to broad social/community objectives. These requirements include commitments to train apprentices and trainees; to provide local and/or indigenous employment opportunities; to buy local materials; and to include art works. The cost and benefits of using public construction contracts to achieve social/community goals have, to our knowledge, not been thoroughly researched in an Australian context. This is likely to reflect in large part the relatively short history of contracting out public works. As Jensen and Stonecash (2004) explain, most previous empirical studies of contracting out have attempted to measure the cost savings achieved through privatization, as this was the focus of policy debate in the 1980s and 1990s. Relatively few studies have addressed the ability of contracting arrangements to ensure the delivery of desired ‘quality’ outcomes1, or the costs of achieving these outcomes via contracting arrangements. One of the potential costs of attempting to leverage social/community outcomes on public construction projects is a reduction in the amount of competition for these projects, with obvious consequences for average bid prices and choice. In jurisdictions, such as Western Australia and Queensland, where currently construction market conditions are already
Resumo:
We present a new penalty-based genetic algorithm for the multi-source and multi-sink minimum vertex cut problem, and illustrate the algorithm’s usefulness with two real-world applications. It is proved in this paper that the genetic algorithm always produces a feasible solution by exploiting some domain-specific knowledge. The genetic algorithm has been implemented on the example applications and evaluated to show how well it scales as the problem size increases.
Resumo:
Despite its growth and prominence, product placement is generally under-researched and this is even more apparent in the area of placement in video gaming. This paper presents exploratory focus group research into this practice. Findings indicate that the introductory footage to a game provides placement opportunities with the highest level of recall, while peripheral non-action is the worst. Interestingly, recall also appears to be higher for individual brands as opposed to manufacturer brands.
Resumo:
Matching method of heavy truck-rear air suspensions is discussed, and a fuzzy control strategy which improves both ride comfort and road friendliness of truck by adjusting damping coefficients of the suspension system is found. In the first place, a Dongfeng EQ1141G7DJ heavy truck’s ten DOF whole vehicle-road model was set up based on Matlab/Simulink and vehicle dynamics. Then appropriate passive air suspensions were chosen to replace the original rear leaf springs of the truck according to truck-suspension matching criterions, consequently, the stiffness of front leaf springs were adjusted too. Then the semi-active fuzzy controllers were designed for further enhancement of the truck’s ride comfort and the road friendliness. After the application of semi-active fuzzy control strategy through simulation, is was indicated that both ride comfort and road friendliness could be enhanced effectively under various road conditions. The strategy proposed may provide theory basis for design and development of truck suspension system in China.
Resumo:
This paper provides conceptual and empirical insights into consumers’ evaluations of online services and their consequent behavioural intentions. We show that behavioural intentions in online contexts are driven primarily by two factors, namely online service satisfaction and perceived service quality. Perceived sacrifice and service quality are found to have an indirect effect on online service satisfaction through their influences on perceived value associated with the online service. In addition, we examine the moderating effects of product involvement and discuss the implications of our research findings.
Resumo:
Historically, asset management focused primarily on the reliability and maintainability of assets; organisations have since then accepted the notion that a much larger array of processes govern the life and use of an asset. With this, asset management’s new paradigm seeks a holistic, multi-disciplinary approach to the management of physical assets. A growing number of organisations now seek to develop integrated asset management frameworks and bodies of knowledge. This research seeks to complement existing outputs of the mentioned organisations through the development of an asset management ontology. Ontologies define a common vocabulary for both researchers and practitioners who need to share information in a chosen domain. A by-product of ontology development is the realisation of a process architecture, of which there is also no evidence in published literature. To develop the ontology and subsequent asset management process architecture, a standard knowledge-engineering methodology is followed. This involves text analysis, definition and classification of terms and visualisation through an appropriate tool (in this case, the Protégé application was used). The result of this research is the first attempt at developing an asset management ontology and process architecture.
Resumo:
Water-filled portable road safety barriers are a common fixture in road works, however their use of water can be problematic, both in terms of the quantity of water used and the transportation of the water to the installation site. This project aims to develop a new design of portable road safety barrier, which will make novel use of composite and foam materials in order to reduce the barrier’s reliance on water in order to control errant vehicles. The project makes use of finite element (FE) techniques in order to simulate and evaluate design concepts. FE methods and models that have previously been tested and validated will be used in combination in order to provide the most accurate numerical simulations available to drive the project forward. LS-DYNA code is as highly dynamic, non-linear numerical solver which is commonly used in the automotive and road safety industries. Several complex materials and physical interactions are to be simulated throughout the course of the project including aluminium foams, composite laminates and water within the barrier during standardised impact tests. Techniques to be used include FE, smoothed particle hydrodynamics (SPH) and weighted multi-parameter optimisation techniques. A detailed optimisation of several design parameters with specific design goals will be performed with LS-DYNA and LS-OPT, which will require a large number of high accuracy simulations and advanced visualisation techniques. Supercomputing will play a central role in the project, enabling the numerous medium element count simulations necessary in order to determine the optimal design parameters of the barrier to be performed. Supercomputing will also allow the development of useful methods of visualisation results and the production of highly detailed simulations for end-product validation purposes. Efforts thus far have been towards integrating various numerical methods (including FEM, SPH and advanced materials models) together in an efficient and accurate manner. Various designs of joining mechanisms have been developed and are currently being developed into FE models and simulations.