512 resultados para Mathematics learning
Resumo:
Information graphics have become increasingly important in representing, organising and analysing information in a technological age. In classroom contexts, information graphics are typically associated with graphs, maps and number lines. However, all students need to become competent with the broad range of graphics that they will encounter in mathematical situations. This paper provides a rationale for creating a test to measure students’ knowledge of graphics. This instrument can be used in mass testing and individual (in-depth) situations. Our analysis of the utility of this instrument informs policy and practice. The results provide an appreciation of the relative difficulty of different information graphics; and provide the capacity to benchmark information about students’ knowledge of graphics. The implications for practice include the need to support the development of students’ knowledge of graphics, the existence of gender differences, the role of cross-curriculum applications in learning about graphics, and the need to explicate the links among graphics.
Resumo:
The progress of a nationally representative sample of 3632 children was followed from early childhood through to primary school, using data from the Longitudinal Study of Australian Children (LSAC). The aim was to examine the predictive effects of different aspects of communicative ability, and of early vs. sustained identification of speech and language impairment, on children's achievement and adjustment at school. Four indicators identified speech and language impairment: parent-rated expressive language concern; parent-rated receptive language concern; use of speech-language pathology services; below average scores on the adapted Peabody Picture Vocabulary Test-III. School outcomes were assessed by teachers' ratings of language/literacy ability, numeracy/mathematical thinking and approaches to learning. Comparison of group differences, using ANOVA, provided clear evidence that children who were identified as having speech and language impairment in their early childhood years did not perform as well at school, two years later, as their non-impaired peers on all three outcomes: Language and Literacy, Mathematical Thinking, and Approaches to Learning. The effects of early speech and language status on literacy, numeracy, and approaches to learning outcomes were similar in magnitude to the effect of family socio-economic factors, after controlling for child characteristics. Additionally, early identification of speech and language impairment (at age 4-5) was found to be a better predictor of school outcomes than sustained identification (at aged 4-5 and 6-7 years). Parent-reports of speech and language impairment in early childhood are useful in foreshadowing later difficulties with school and providing early intervention and targeted support from speech-language pathologists and specialist teachers.
Resumo:
A literature-based instrument gathered data about 147 final-year preservice teachers’ perceptions of their mentors’ practices related to primary mathematics teaching. Five factors characterized effective mentoring practices in primary mathematics teaching had acceptable Cronbach alphas, that is, Personal Attributes (mean scale score=3.97, SD [standard deviation]=0.81), System Requirements (mean scale score=2.98, SD=0.96), Pedagogical Knowledge (mean scale score=3.61, SD=0.89), Modelling (mean scale score=4.03, SD=0.73), and Feedback (mean scale score=3.80, SD=0.86) were .91, .74, .94, .89, and .86 respectively. Qualitative data (n=44) investigated mentors’ perceptions of mentoring these preservice teachers, including identification of successful mentoring practices and ways to enhance practices.
Resumo:
There is a growing consensus among many educators that the goals of teaching and learning mathematics are to help students solve real-life problems, participate intelligently in daily affairs, and prepare them for jobs (Gardiner, 1994; Roeber, 1995). These goals suggest that the role of routine procedural skills should be diminished while more emphasis ought to be placed on learners gaining conceptual insights and analytical skills that appear essential in real-life mathematical problem solving (Schoenfeld, 1993; Stenmark, 1989).
Resumo:
In this paper we discuss our current efforts to develop and implement an exploratory, discovery mode assessment item into the total learning and assessment profile for a target group of about 100 second level engineering mathematics students. The assessment item under development is composed of 2 parts, namely, a set of "pre-lab" homework problems (which focus on relevant prior mathematical knowledge, concepts and skills), and complementary computing laboratory exercises which are undertaken within a fixed (1 hour) time frame. In particular, the computing exercises exploit the algebraic manipulation and visualisation capabilities of the symbolic algebra package MAPLE, with the aim of promoting understanding of certain mathematical concepts and skills via visual and intuitive reasoning, rather than a formal or rigorous approach. The assessment task we are developing is aimed at providing students with a significant learning experience, in addition to providing feedback on their individual knowledge and skills. To this end, a noteworthy feature of the scheme is that marks awarded for the laboratory work are primarily based on the extent to which reflective, critical thinking is demonstrated, rather than the amount of CBE-style tasks completed by the student within the allowed time. With regard to student learning outcomes, a novel and potentially critical feature of our scheme is that the assessment task is designed to be intimately linked to the overall course content, in that it aims to introduce important concepts and skills (via individual student exploration) which will be revisited somewhat later in the pedagogically more restrictive formal lecture component of the course (typically a large group plenary format). Furthermore, the time delay involved, or "incubation period", is also a deliberate design feature: it is intended to allow students the opportunity to undergo potentially important internal re-adjustments in their understanding, before being exposed to lectures on related course content which are invariably delivered in a more condensed, formal and mathematically rigorous manner. In our presentation, we will discuss in more detail our motivation and rationale for trailing such a scheme for the targeted student group. Some of the advantages and disadvantages of our approach (as we perceived them at the initial stages) will also be enumerated. In a companion paper, the theoretical framework for our approach will be more fully elaborated, and measures of student learning outcomes (as obtained from eg. student provided feedback) will be discussed.
Resumo:
Generalising arithmetic structures is seen as a key to developing algebraic understanding. Many adolescent students begin secondary school with a poor understanding of the structure of arithmetic. This paper presents a theory for a teaching/learning trajectory designed to build mathematical understanding and abstraction in the elementary school context. The particular focus is on the use of models and representations to construct an understanding of equivalence. The results of a longitudinal intervention study with five elementary schools, following 220 students as they progressed from Year 2 to Year 6, informed the development of this theory. Data were gathered from multiple sources including interviews, videos of classroom teaching, and pre-and post-tests. Data reduction resulted in the development of nine conjectures representing a growth in integration of models and representations. These conjectures formed the basis of the theory.
Resumo:
This abstract is a preliminary discussion of the importance of blending of Indigenous cultural knowledges with mainstream knowledges of mathematics for supporting Indigenous young people. This import is emphasised in the documents Preparing the Ground for Partnership (Priest, 2005), The Indigenous Education Strategic Directions 2008–2011 (Department of Education, Training and the Arts, 2007) and the National Goals for Indigenous Education (Department of Education, Employment and Work Relations, 2008). These documents highlight the contextualising of literacy and numeracy to students’ community and culture (see Priest, 2005). Here, Community describes “a culture that is oriented primarily towards the needs of the group. Martin Nakata (2007) describes contextualising to culture as about that which already exists, that is, Torres Strait Islander community, cultural context and home languages (Nakata, 2007, p. 2). Continuing, Ezeife (2002) cites Hollins (1996) in stating that Indigenous people belong to “high-context culture groups” (p. 185). That is, “high-context cultures are characterized by a holistic (top-down) approach to information processing in which meaning is “extracted” from the environment and the situation. Low-context cultures use a linear, sequential building block (bottom-up) approach to information processing in which meaning is constructed” (p.185). In this regard, students who use holistic thought processing are more likely to be disadvantaged in mainstream mathematics classrooms. This is because Westernised mathematics is presented as broken into parts with limited connections made between concepts and with the students’ culture. It potentially conflicts with how they learn. If this is to change the curriculum needs to be made more culture-sensitive and community orientated so that students know and understand what they are learning and for what purposes.
Resumo:
Many nations are experiencing a decline in the number of graduating engineers, an overall poor preparedness for engineering studies in tertiary institutions, and a lack of diversity in the field. Given the increasing importance of mathematics, science, engineering, and technology in our world, it is imperative that we foster an interest and drive to participate in engineering from an early age. This discuission paper argues for the intergration of engineering education within the elementary and middle school mathematics curricula. In doing so, we offer a definition of engineering education and address its core goals; consider some perceptions of engineering and engineering education held by teachers and students; and offer one approach to promoting engineering education within the elementary and middle school mathematics curriculum, namely through mathematical modeling.
Resumo:
Engineering education for elementary school students is a new and increasingly important domain of research by mathematics, science, technology, and engineering educators. Recent research has raised questions about the context of engineering problems that are meaningful, engaging, and inspiring for young students. In the present study an environmental engineering activity was implemented in two classes of 11-year-old students in Cyprus. The problem required students to use the data to develop a procedure for selecting among alternative countries from which to buy water. Students created a range of models that adequately solved the problem although not all models took into account all of the data provided. The models varied in the number of problem factors taken into consideration and also in the different approaches adopted in dealing with the problem factors. At least two groups of students integrated into their models the environmental aspect of the problem (energy consumption, water pollution) and further refined their models. Results provide evidence that engineering model-eliciting activities can be successfully integrated in the elementary mathematics curriculum. These activities provide rich opportunities for students to deal with engineering contexts and to apply their learning in mathematics and science to solving real-world engineering problems.
Resumo:
The increased recognition of the theory in mathematics education is evident in numerous handbooks, journal articles, and other publications. For example, Silver and Herbst (2007) examined ―Theory in Mathematics Education Scholarship‖ in the Second Handbook of Research on Mathematics Teaching and Learning (Lester, 2007) while Cobb (2007) addressed ―Putting Philosophy to Work: Coping with Multiple Theoretical Perspectives‖ in the same handbook. And a central component of both the first and second editions of the Handbook of International Research in Mathematics Education (English, 2002; 2008) was ―advances in theory development.‖ Needless to say, the comprehensive second edition of the Handbook of Educational Psychology (Alexander & Winne, 2006) abounds with analyses of theoretical developments across a variety of disciplines and contexts. Numerous definitions of ―theory‖ appear in the literature (e.g., see Silver & Herbst, in Lester, 2007). It is not our intention to provide a ―one-size-fits-all‖ definition of theory per se as applied to our discipline; rather we consider multiple perspectives on theory and its many roles in improving the teaching and learning of mathematics in varied contexts.
Resumo:
The overall purpose of this study was to develop a model to inform the design of professional development programs and the implementation of cooperative learning within Thai primary school mathematics classrooms. Action research design, with interviews, surveys and observations, was used for this study. Survey questionnaires and classroom observations investigated the factors that influence the implementation of cooperative learning strategies and academic achievement in Thai primary school mathematics classrooms. The teachers’ interviews and classroom observation also examined the factors that need to be addressed in teacher professional development programs in order to facilitate cooperative learning in Thai mathematics classrooms. The outcome of this study was a model consisting of two sets of criteria to inform the successful implementation of cooperative learning in Thai primary schools. The first set of criteria was for proposers and developers of professional development programs. This set consists of macro- and micro-level criteria. The macro-level criteria focus on the overall structure of professional development programs and how and when the professional development programs should be implemented. The micro-level criteria focused on the specific topics that need to be included in professional development programs. The second set of criteria was for Thai principals and teachers to facilitate the introduction of cooperative learning in their classrooms. The research outcome also indicated that the attainment of these cooperative learning strategies and skills had a positive impact on the students’ learning of mathematics.