211 resultados para Life Cycle


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The construction industry is categorised as being an information-intensive industry and described as one of the most important industries in any developed country, facing a period of rapid and unparalleled change (Industry Science Resources 1999) (Love P.E.D., Tucker S.N. et al. 1996). Project communications are becoming increasingly complex, with a growing need and fundamental drive to collaborate electronically at project level and beyond (Olesen K. and Myers M.D. 1999; Thorpe T. and Mead S. 2001; CITE 2003). Yet, the industry is also identified as having a considerable lack of knowledge and awareness about innovative information and communication technology (ICT) and web-based communication processes, systems and solutions which may prove beneficial in the procurement, delivery and life cycle of projects (NSW Government 1998; Kajewski S. and Weippert A. 2000). The Internet has debatably revolutionised the way in which information is stored, exchanged and viewed, opening new avenues for business, which only a decade ago were deemed almost inconceivable (DCITA 1998; IIB 2002). In an attempt to put these ‘new avenues of business’ into perspective, this report provides an overall ‘snapshot’ of current public and private construction industry sector opportunities and practices in the implementation and application of web-based ICT tools, systems and processes (e-Uptake). Research found that even with a reserved uptake, the construction industry and its participating organisations are making concerted efforts (fortunately with positive results) in taking up innovative forms of doing business via the internet, including e-Tendering (making it possible to manage the entire tender letting process electronically and online) (Anumba C.J. and Ruikar K. 2002; ITCBP 2003). Furthermore, Government (often a key client within the construction industry),and with its increased tendency to transact its business electronically, undoubtedly has an effect on how various private industry consultants, contractors, suppliers, etc. do business (Murray M. 2003) – by offering a wide range of (current and anticipated) e-facilities / services, including e-Tendering (Ecommerce 2002). Overall, doing business electronically is found to have a profound impact on the way today’s construction businesses operate - streamlining existing processes, with the growth in innovative tools, such as e-Tender, offering the construction industry new responsibilities and opportunities for all parties involved (ITCBP 2003). It is therefore important that these opportunities should be accessible to as many construction industry businesses as possible (The Construction Confederation 2001). Historically, there is a considerable exchange of information between various parties during a tendering process, where accuracy and efficiency of documentation is critical. Traditionally this process is either paper-based (involving large volumes of supporting tender documentation), or via a number of stand-alone, non-compatible computer systems, usually costly to both the client and contractor. As such, having a standard electronic exchange format that allows all parties involved in an electronic tender process to access one system only via the Internet, saves both time and money, eliminates transcription errors and increases speed of bid analysis (The Construction Confederation 2001). Supporting this research project’s aims and objectives, researchers set to determine today’s construction industry ‘current state-of-play’ in relation to e-Tendering opportunities. The report also provides brief introductions to several Australian and International e-Tender systems identified during this investigation. e-Tendering, in its simplest form, is described as the electronic publishing, communicating, accessing, receiving and submitting of all tender related information and documentation via the internet, thereby replacing the traditional paper-based tender processes, and achieving a more efficient and effective business process for all parties involved (NT Governement 2000; NT Government 2000; NSW Department of Commerce 2003; NSW Government 2003). Although most of the e-Tender websites investigated at the time, maintain their tendering processes and capabilities are ‘electronic’, research shows these ‘eTendering’ systems vary from being reasonably advanced to more ‘basic’ electronic tender notification and archiving services for various industry sectors. Research also indicates an e-Tender system should have a number of basic features and capabilities, including: • All tender documentation to be distributed via a secure web-based tender system – thereby avoiding the need for collating paperwork and couriers. • The client/purchaser should be able to upload a notice and/or invitation to tender onto the system. • Notification is sent out electronically (usually via email) for suppliers to download the information and return their responses electronically (online). • During the tender period, updates and queries are exchanged through the same e-Tender system. • The client/purchaser should only be able to access the tenders after the deadline has passed. • All tender related information is held in a central database, which should be easily searchable and fully audited, with all activities recorded. • It is essential that tender documents are not read or submitted by unauthorised parties. • Users of the e-Tender system are to be properly identified and registered via controlled access. In simple terms, security has to be as good as if not better than a manual tender process. Data is to be encrypted and users authenticated by means such as digital signatures, electronic certificates or smartcards. • All parties must be assured that no 'undetected' alterations can be made to any tender. • The tenderer should be able to amend the bid right up to the deadline – whilst the client/purchaser cannot obtain access until the submission deadline has passed. • The e-Tender system may also include features such as a database of service providers with spreadsheet-based pricing schedules, which can make it easier for a potential tenderer to electronically prepare and analyse a tender. Research indicates the efficiency of an e-Tender process is well supported internationally, with a significant number, yet similar, e-Tender benefits identified during this investigation. Both construction industry and Government participants generally agree that the implementation of an automated e-Tendering process or system enhances the overall quality, timeliness and cost-effectiveness of a tender process, and provides a more streamlined method of receiving, managing, and submitting tender documents than the traditional paper-based process. On the other hand, whilst there are undoubtedly many more barriers challenging the successful implementation and adoption of an e-Tendering system or process, researchers have also identified a range of challenges and perceptions that seem to hinder the uptake of this innovative approach to tendering electronically. A central concern seems to be that of security - when industry organisations have to use the Internet for electronic information transfer. As a result, when it comes to e-Tendering, industry participants insist these innovative tendering systems are developed to ensure the utmost security and integrity. Finally, if Australian organisations continue to explore the competitive ‘dynamics’ of the construction industry, without realising the current and future, trends and benefits of adopting innovative processes, such as e-Tendering, it will limit their globalising opportunities to expand into overseas markets and allow the continuation of international firms successfully entering local markets. As such, researchers believe increased knowledge, awareness and successful implementation of innovative systems and processes raises great expectations regarding their contribution towards ‘stimulating’ the globalisation of electronic procurement activities, and improving overall business and project performances throughout the construction industry sectors and overall marketplace (NSW Government 2002; Harty C. 2003; Murray M. 2003; Pietroforte R. 2003). Achieving the successful integration of an innovative e-Tender solution with an existing / traditional process can be a complex, and if not done correctly, could lead to failure (Bourn J. 2002).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Australia’s civil infrastructure assets of roads, bridges, railways, buildings and other structures are worth billions of dollars. Road assets alone are valued at around A$ 140 billion. As the condition of assets deteriorate over time, close to A$10 billion is spent annually in asset maintenance on Australia's roads, or the equivalent of A$27 million per day. To effectively manage road infrastructures, firstly, road agencies need to optimise the expenditure for asset data collection, but at the same time, not jeopardise the reliability in using the optimised data to predict maintenance and rehabilitation costs. Secondly, road agencies need to accurately predict the deterioration rates of infrastructures to reflect local conditions so that the budget estimates could be accurately estimated. And finally, the prediction of budgets for maintenance and rehabilitation must provide a certain degree of reliability. A procedure for assessing investment decision for road asset management has been developed. The procedure includes: • A methodology for optimising asset data collection; • A methodology for calibrating deterioration prediction models; • A methodology for assessing risk-adjusted estimates for life-cycle cost estimates. • A decision framework in the form of risk map

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This report fully summarises a project designed to enhance commercial real estate performance within both operational and investment contexts through the development of a model aimed at supporting improved decision-making. The model is based on a risk adjusted discounted cash flow, providing a valuable toolkit for building managers, owners, and potential investors for evaluating individual building performance in terms of financial, social and environmental criteria over the complete life-cycle of the asset. The ‘triple bottom line’ approach to the evaluation of commercial property has much significance for the administrators of public property portfolios in particular. It also has applications more generally for the wider real estate industry given that the advent of ‘green’ construction requires new methods for evaluating both new and existing building stocks. The research is unique in that it focuses on the accuracy of the input variables required for the model. These key variables were largely determined by market-based research and an extensive literature review, and have been fine-tuned with extensive testing. In essence, the project has considered probability-based risk analysis techniques that required market-based assessment. The projections listed in the partner engineers’ building audit reports of the four case study buildings were fed into the property evaluation model developed by the research team. The results are strongly consistent with previously existing, less robust evaluation techniques. And importantly, this model pioneers an approach for taking full account of the triple bottom line, establishing a benchmark for related research to follow. The project’s industry partners expressed a high degree of satisfaction with the project outcomes at a recent demonstration seminar. The project in its existing form has not been geared towards commercial applications but it is anticipated that QDPW and other industry partners will benefit greatly by using this tool for the performance evaluation of property assets. The project met the objectives of the original proposal as well as all the specified milestones. The project has been completed within budget and on time. This research project has achieved the objective by establishing research foci on the model structure, the key input variable identification, the drivers of the relevant property markets, the determinants of the key variables (Research Engine no.1), the examination of risk measurement, the incorporation of risk simulation exercises (Research Engine no.2), the importance of both environmental and social factors and, finally the impact of the triple bottom line measures on the asset (Research Engine no. 3).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This report presents a summary of the research conducted by the research team of the CRC project 2002-005-C, “Decision support tools for concrete infrastructure rehabilitation”. The project scope, objectives, significance and innovation and the research methodology is outlined in the introduction, which is followed by five chapters covering different aspects of the research completed. Major findings of a review of literature conducted covering both use of fibre reinforced polymer composites in rehabilitation of concrete bridge structures and decision support frameworks in civil infrastructure asset management is presented in chapter two. Case study of development of a strengthening scheme for the “Tenthill Creek bridge” is covered in the third chapter, which summarises the capacity assessment, traditional strengthening solution and the innovative solution using FRP composites. The fourth chapter presents the methodology for development of a user guide covering selection of materials, design and application of FRP in strengthening of concrete structures, which were demonstrated using design examples. Fifth chapter presents the methodology developed for evaluating whole of life cycle costing of treatment options for concrete bridge structures. The decision support software tool developed to compare different treatment options based on reliability based whole of life cycle costing will be briefly described in this chapter as well. The report concludes with a summary of findings and recommendations for future research.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In construction, inter-organisational relationships are of the highest importance. Ethical practice and behaviour is a means for improving inter-organisational relationships by providing a clear understanding of the rights and obligations of all parties, improving productivity, affecting long-term business dealings, and influencing quality, time and costs. Therefore, the ability to build sustainable relationships grounded in ethical practice is important to the construction industry. Establishing ethical standards at the beginning of the procurement process provides an ethical platform for the project life cycle and the relationship between procurers and contractors. Therefore it is important to determine what the ethical issues are in the Australian construction industry from members of the industry themselves; including clients. This “bottom up” approach is not a particularly new concept. Ever since the Gyles Royal Commission in 1992 there has been a considerable effort by government agencies to develop policies to improve the ethical behaviour of the industry.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Realistic estimates of short- and long-term (strategic) budgets for maintenance and rehabilitation of road assessment management should consider the stochastic characteristics of asset conditions of the road networks so that the overall variability of road asset data conditions is taken into account. The probability theory has been used for assessing life-cycle costs for bridge infrastructures by Kong and Frangopol (2003), Zayed et.al. (2002), Kong and Frangopol (2003), Liu and Frangopol (2004), Noortwijk and Frangopol (2004), Novick (1993). Salem 2003 cited the importance of the collection and analysis of existing data on total costs for all life-cycle phases of existing infrastructure, including bridges, road etc., and the use of realistic methods for calculating the probable useful life of these infrastructures (Salem et. al. 2003). Zayed et. al. (2002) reported conflicting results in life-cycle cost analysis using deterministic and stochastic methods. Frangopol et. al. 2001 suggested that additional research was required to develop better life-cycle models and tools to quantify risks, and benefits associated with infrastructures. It is evident from the review of the literature that there is very limited information on the methodology that uses the stochastic characteristics of asset condition data for assessing budgets/costs for road maintenance and rehabilitation (Abaza 2002, Salem et. al. 2003, Zhao, et. al. 2004). Due to this limited information in the research literature, this report will describe and summarise the methodologies presented by each publication and also suggest a methodology for the current research project funded under the Cooperative Research Centre for Construction Innovation CRC CI project no 2003-029-C.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose – The purpose of this paper is to provide a practicable systems-based approach to knowledge management (KM) in a project environment, to encourage organisations to unlock the value in their review processes. It relies on knowledge capture and storage at decision review points, to enrich individual, team and organisational learning during the project life cycle. The project's phases are typically represented horizontally with deliverables (objectives) or project "promises" as the desirable outcomes. The purpose of this paper is to give expression through introducing a vertical dimension to facilitate the KM process. A model is proposed that conceptualises project-specific knowledge drawing on and feeding into the organisation's knowledge management system (KMS) at tactical and strategic levels. Design/methodology/approach – This conceptual paper links concepts from systems theory with KM, to produce a model to identify, collate, and optimise project-based knowledge and integrate it into the management process. Findings – The application of the system theory approach enriches the knowledge generated by a project, and feeds it into the next phase of that project. At the same time, it contributes to the individual's and project team's KM, specifies possible courses of action, together with risks, costs and benefits and thus it expands the organisation's higher level KMS. Research limitations/implications – The concept suggests that the knowledge capture, storage and sharing process may best be undertaken holistically, in view of the systems relationships between the tasks. Systems theory structures this process. Research opportunities include studying the interfaces between levels of KM, in relation to the project's progress. Practical implications – Reconceptualisation of the project as a knowledge creation process may improve the project's progress as well as add to the individual's, project team's, and wider organisation's knowledge base. An example is given. Originality/value – This paper illuminates the broader potential of under-utilised opportunities in well-known management approaches to add dimension to the business project, of knowledge creation, storage and sharing.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

With an increase in growing number of aging public building infrastructure globally, there is an opportunity for an efficient life care management rather then mere demolition and rebuild. By carefully implementing appropriate structural engineering practices with facility management, the whole of life cycle costs for public building assets can be optimised and public money can be saved and better utilised elsewhere. A need of decision support tool/methodology which can assist asset manager make better decision among demolish, refurbish, do nothing or rebuilt option for any typical building under consideration is growing in order to optimise maintenance funds. The paper is part of research project focusing on development of such methodology known as residual service life prediction. The paper is mainly focusing on following three major aspects of public building infrastructure; first, issues and challenges in optimisation of maintenance funds, second, residual service life prediction methodology and issues and challenges in the development of such methodology. The paper concludes with the authors’ observations and further research potentials

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There is evidence that many heating, ventilating & air conditioning (HVAC) systems, installed in larger buildings, have more capacity than is ever required to keep the occupants comfortable. This paper explores the reasons why this can occur, by examining a typical brief/design/documentation process. Over-sized HVAC systems cost more to install and operate and may not be able to control thermal comfort as well as a “right-sized” system. These impacts are evaluated, where data exists. Finally, some suggestions are developed to minimise both the extent of, and the negative impacts of, HVAC system over-sizing, for example: • Challenge “rules of thumb” and/or brief requirements which may be out of date. • Conduct an accurate load estimate, using AIRAH design data, specific to project location, and then resist the temptation to apply “safety factors • Use a load estimation program that accounts for thermal storage and diversification of peak loads for each zone and air handling system. • Select chiller sizes and staged or variable speed pumps and fans to ensure good part load performance. • Allow for unknown future tenancies by designing flexibility into the system, not by over-sizing. For example, generous sizing of distribution pipework and ductwork will allow available capacity to be redistributed. • Provide an auxiliary tenant condenser water loop to handle high load areas. • Consider using an Integrated Design Process, build an integrated load and energy use simulation model and test different operational scenarios • Use comprehensive Life Cycle Cost analysis for selection of the most optimal design solutions. This paper is an interim report on the findings of CRC-CI project 2002-051-B, Right-Sizing HVAC Systems, which is due for completion in January 2006.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Building Information Model (BIM) software, collaboration platforms and 5D Construction Management software is now commercially available and presents the opportunity for construction project teams to design more cost effectively, plan construction earlier, manage costs throughout the life cycle of a building project and provide a central asset management register for facilities managers. This paper outlines the merits of taking a holistic view of ICT in curriculum design. The educational barriers to implementation of these models and planning tools are highlighted. Careful choice of computer software can make a significant difference to how quickly students can master skills; how easy it is to study and how much they enjoy learning and be prepared for employment. An argument for BIM and 5D planning tools to be introduced into the curriculum to assist industry increase productivity and efficiencies are outlined by the authors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Australia has no nationally accepted building products life cycle inventory (LCI) database for use in building Ecologically Sustainable Development (ESD) assessment (BEA) tools. More information about the sustainability of the supply chain is limited by industry’s lack of real capacity to deliver objective information on process and product environmental impact. Recognition of these deficits emerged during compilation of a National LCI database to inform LCADesign, a prototype 3 dimensional object oriented computer aided design (3-D CAD) commercial building design tool. Development of this Australian LCI represents 24 staff years of effort here since 1995. Further development of LCADesign extensions is proposed as being essential to support key applications demanded from a more holistic theoretical framework calling for modules of new building and construction industry tools. A proposed tool, conceptually called LCADetails, is to serve the building product industries own needs as well as that of commercial building design amongst other industries’ prospective needs. In this paper, a proposition is examined that the existing national LCI database should be further expanded to serve Australian building product industries’ needs as well as to provide details for its client-base from a web based portal containing a module of practical supply and procurement applications. Along with improved supply chain assessment services, this proposed portal is envisaged to facilitate industry environmental life cycle improvement assessment and support decision-making to provide accredited data for operational reporting capabilities, load-based reasoning as well as BEA applications. This paper provides an overview of developments to date, including a novel 3-D CAD information and communications technology (ICT) platform for more holistic integration of existing tools for true cost assessment. Further conceptualisation of future prospects, based on a new holistic life cycle assessment framework LCADevelop, considering stakeholder relationships and their need for a range of complementary tools leveraging automated function off such ICT platforms to inform dimensionally defined operations for such as automotive, civil, transport and industrial applications are also explored.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Manufacture, construction and use of buildings and building materials make a significant environmental impact internally (inside the building), locally (neighbourhood) and globally. Life cycle assessment (LCA) methodology is being applied for evaluating the environmental impact of building/or building materials. One of the major applications of LCA is to identify key issues of a product system from cradle to grave. Key issues identified in an LCA lead one to the right direction in assessing the environmental aspects of a product system and help to identify the areas for improvement of the environmental performance of a product as well. The purpose of this paper is to suggest two methods for identifying key issues using an integrated tool (LCADesign), which has been developed to provide a method of determining the best alternative for reducing environmental impacts from a building or building materials, and compare both methods in the case study. This paper assists the designers or marketers related to building or building materials in their decision making by giving information on activities or alternatives which are identified as key issues for environmental impacts.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The ability to assess a commercial building for its impact on the environment at the earliest stage of design is a goal which is achievable by integrating several approaches into a single procedure directly from the 3D CAD representation. Such an approach enables building design professionals to make informed decisions on the environmental impact of building and its alternatives during the design development stage instead of at the post-design stage where options become limited. The indicators of interest are those which relate to consumption of resources and energy, contributions to pollution of air, water and soil, and impacts on the health and wellbeing of people in the built environment as a result of constructing and operating buildings. 3D object-oriented CAD files contain a wealth of building information which can be interrogated for details required for analysis of the performance of a design. The quantities of all components in the building can be automatically obtained from the 3D CAD objects and their constituent materials identified to calculate a complete list of the amounts of all building products such as concrete, steel, timber, plastic etc. When this information is combined with a life cycle inventory database, key internationally recognised environmental indicators can be estimated. Such a fully integrated tool known as LCADesign has been created for automated ecoefficiency assessment of commercial buildings direct from 3D CAD. This paper outlines the key features of LCADesign and its application to environmental assessment of commercial buildings.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Buildings consume resources and energy, contribute to pollution of our air, water and soil, impact the health and well-being of populations and constitute an important part of the built environment in which we live. The ability to assess their design with a view to reducing that impact automatically from their 3D CAD representations enables building design professionals to make informed decisions on the environmental impact of building structures. Contemporary 3D object-oriented CAD files contain a wealth of building information. LCADesign has been designed as a fully integrated approach for automated eco-efficiency assessment of commercial buildings direct from 3D CAD. LCADesign accesses the 3D CAD detail through Industry Foundation Classes (IFCs) - the international standard file format for defining architectural and constructional CAD graphic data as 3D real-world objects - to permit construction professionals to interrogate these intelligent drawing objects for analysis of the performance of a design. The automated take-off provides quantities of all building components whose specific production processes, logistics and raw material inputs, where necessary, are identified to calculate a complete list of quantities for all products such as concrete, steel, timber, plastic etc and combines this information with the life cycle inventory database, to estimate key internationally recognised environmental indicators such as CML, EPS and Eco-indicator 99. This paper outlines the key modules of LCADesign and their role in delivering an automated eco-efficiency assessment for commercial buildings.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

AIMM stands for 'Agents for Improved Maintenance Management.' The AIMM system is a prototype tool that has developed the state of the art life cycle modelling of buildings through the linking of a 3D model with maintenance data to allow both the facility manager and the designer to gain access to building maintenance information and knowledge that is currently inaccessible. AIMM integrates data mining agents into the maintenance process to produce timely data for the facility manager on the effects of different maintenance regimes.