250 resultados para Laser a scansioneTessituraConglomerato bituminosoMesh 3D
Resumo:
Rapid prototyping (RP) techniques have been utilised by tissue engineers to produce three-dimensional (3D) porous scaffolds. RP technologies allow the design and fabrication of complex scaffold geometries with a fully interconnected pore network. Three-dimensional printing (3DP) technique was used to fabricate scaffolds with a novel micro- and macro-architecture. In this study, a unique blend of starch-based polymer powders (cornstarch, dextran and gelatin) was developed for the 3DP process. Cylindrical scaffolds of five different designs were fabricated and post-processed to enhance the mechanical and chemical properties. The scaffold properties were characterised by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), porosity analysis and compression tests
Resumo:
Cell-cell and cell-matrix interactions play a major role in tumor morphogenesis and cancer metastasis. Therefore, it is crucial to create a model with a biomimetic microenvironment that allows such interactions to fully represent the pathophysiology of a disease for an in vitro study. This is achievable by using three-dimensional (3D) models instead of conventional two-dimensional (2D) cultures with the aid of tissue engineering technology. We are now able to better address the complex intercellular interactions underlying prostate cancer (CaP) bone metastasis through such models. In this study, we assessed the interaction of CaP cells and human osteoblasts (hOBs) within a tissue engineered bone (TEB) construct. Consistent with other in vivo studies, our findings show that intercellular and CaP cell-bone matrix interactions lead to elevated levels of matrix metalloproteinases, steroidogenic enzymes and the CaP biomarker, prostate specific antigen (PSA); all associated with CaP metastasis. Hence, it highlights the physiological relevance of this model. We believe that this model will provide new insights for understanding of the previously poorly understood molecular mechanisms of bone metastasis, which will foster further translational studies, and ultimately offer a potential tool for drug screening. © 2010 Landes Bioscience.
Resumo:
The behaviour of cells cultured within three-dimensional (3D) structures rather than onto two-dimensional (2D) culture plastic more closely reflects their in vivo responses. Consequently, 3D culture systems are becoming crucial scientific tools in cancer cell research. We used a novel 3D culture concept to assess cell-matrix interactions implicated in carcinogenesis: a synthetic hydrogel matrix equipped with key biomimetic features, namely incorporated cell integrin-binding motifs (e.g. RGD peptides) and the ability of being degraded by cell-secreted proteases (e.g. matrix metalloproteases). As a cell model, we chose epithelial ovarian cancer, an aggressive disease typically diagnosed at an advanced stage when chemoresistance occurs. Both cell lines used (OV-MZ-6, SKOV-3) proliferated similarly in 2D, but not in 3D. Spheroid formation was observed exclusively in 3D when cells were embedded within hydrogels. By exploiting the design flexibility of the hydrogel characteristics, we showed that proliferation in 3D was dependent on cell-integrin engagement and the ability of cells to proteolytically remodel their extracellular microenvironment. Higher survival rates after exposure to the anti-cancer drug paclitaxel were observed in cell spheroids grown in hydrogels (40-60%) compared to cell monolayers in 2D (20%). Thus, 2D evaluation of chemosensitivity may not reflect pathophysiological events seen in patients. Because of the design flexibility of their characteristics and their stability in long-term cultures (28 days), these biomimetic hydrogels represent alternative culture systems for the increasing demand in cancer research for more versatile, physiologically relevant and reproducible 3D matrices.
Resumo:
The ideal dermal matrix should be able to provide the right biological and physical environment to ensure homogenous cell and extracellular matrix (ECM) distribution, as well as the right size and morphology of the neo-tissue required. Four natural and synthetic 3D matrices were evaluated in vitro as dermal matrices, namely (1) equine collagen foam, TissuFleece®, (2) acellular dermal replacement, Alloderm®, (3) knitted poly(lactic-co-glycolic acid) (10:90)–poly(-caprolactone) (PLGA–PCL) mesh, (4) chitosan scaffold. Human dermal fibroblasts were cultured on the specimens over 3 weeks. Cell morphology, distribution and viability were assessed by electron microscopy, histology and confocal laser microscopy. Metabolic activity and DNA synthesis were analysed via MTS metabolic assay and [3H]-thymidine uptake, while ECM protein expression was determined by immunohistochemistry. TissuFleece®, Alloderm® and PLGA–PCL mesh supported cell attachment, proliferation and neo-tissue formation. However, TissuFleece® contracted to 10% of the original size while Alloderm® supported cell proliferation predominantly on the surface of the material. PLGA–PCL mesh promoted more homogenous cell distribution and tissue formation. Chitosan scaffolds did not support cell attachment and proliferation. These results demonstrated that physical characteristics including porosity and mechanical stability to withstand cell contraction forces are important in determining the success of a dermal matrix material.
Resumo:
Our strategy entails investigating the influence of varied concentrations (0, 10, 100 and 1000 ng/ml) of human recombinant bone morphogenetic protein-2 (rhBMP-2) on the osteogenic expression of canine osteoblasts, seeded onto poly-caprolactone 20% tricalcium phosphate (PCL-TCP) scaffolds in vitro. Biochemical assay revealed that groups with rhBMP-2 displayed an initial burst in cell growth that was not dose-dependent. However, after 13 days, cell growth declined to a value similar to control. Significantly less cell growth was observed for construct with 1000 ng/ml of rhBMP-2 from 20 days onwards. Confocal microscopy confirmed viability of osteoblasts and at day 20, groups seeded with rhBMP-2 displayed heightened cell death as compared to control. Phase contrast and scanning electron microscopy revealed that osteoblasts heavily colonized surfaces, rods and pores of the PCL-TCP scaffolds. This was consistent for all groups. Finally, Von Kossa and osteocalcin assays demonstrated that cells from all groups maintained their osteogenic phenotype throughout the experiment. Calcification was observed as early as four days after stimulation for groups seeded with rhBMP-2. In conclusion, rhBMP-2 seems to enhance the differentiated function of canine osteoblasts in a non-dose dependent manner. This resulted in accelerated mineralization, followed by death of osteoblasts as they underwent terminal differentiation. Notably, PCL-TCP scaffolds seeded only with canine osteoblasts could sustain excellent osteogenic expression in vitro. Hence, the synergy of PCL with bioactive TCP and rhBMP-2 in a novel composite scaffold, could offer an exciting approach for bone regeneration.
Resumo:
Professor Christian Langton is a medical physicist at Queensland University of Technology in Brisbane. He has developed a way of preparing children who are about to have either radiotherapy or MRI imaging procedures and is seeking research partners to develop and test these further. This is a great opportunity for nurses interested in research, and who have access to a children’s hospital, to work with Professor Langton on some truly innovative, multidisciplinary research.
Resumo:
Groundwater is increasingly recognised as an important yet vulnerable natural resource, and a key consideration in water cycle management. However, communication of sub-surface water system behaviour, as an important part of encouraging better water management, is visually difficult. Modern 3D visualisation techniques can be used to effectively communicate these complex behaviours to engage and inform community stakeholders. Most software developed for this purpose is expensive and requires specialist skills. The Groundwater Visualisation System (GVS) developed by QUT integrates a wide range of surface and sub-surface data, to produce a 3D visualisation of the behaviour, structure and connectivity of groundwater/surface water systems. Surface data (elevation, surface water, land use, vegetation and geology) and data collected from boreholes (bore locations and subsurface geology) are combined to visualise the nature, structure and connectivity of groundwater/surface water systems. Time-series data (water levels, groundwater quality, rainfall, stream flow and groundwater abstraction) is displayed as an animation within the 3D framework, or graphically, to show water system condition changes over time. GVS delivers an interactive, stand-alone 3D Visualisation product that can be used in a standard PC environment. No specialised training or modelling skills are required. The software has been used extensively in the SEQ region to inform and engage both water managers and the community alike. Examples will be given of GVS visualisations developed in areas where there have been community concerns around groundwater over-use and contamination.
Resumo:
Recently published studies not only demonstrated that laser printers are often significant sources of ultrafine particles, but they also shed light on particle formation mechanisms. While the role of fuser roller temperature as a factor affecting particle formation rate has been postulated, its impact has never been quantified. To address this gap in knowledge, this study measured emissions from 30 laser printers in chamber using a standardized printing sequence, as well as monitoring fuser roller temperature. Based on a simplified mass balance equation, the average emission rates of particle number, PM2.5 and O3 were calculated. The results showed that: almost all printers were found to be high particle number emitters (i.e. > 1.01×1010 particles/min); colour printing generated more PM2.5 than monochrome printing; and all printers generated significant amounts of O3. Particle number emissions varied significantly during printing and followed the cycle of fuser roller temperature variation, which points to temperature being the strongest factor controlling emissions. For two sub-groups of printers using the same technology (heating lamps), systematic positive correlations, in the form of a power law, were found between average particle number emission rate and average roller temperature. Other factors, such as fuser material and structure, are also thought to play a role, since no such correlation was found for the remaining two sub-groups of printers using heating lamps, or for the printers using heating strips. In addition, O3 and total PM2.5 were not found to be statistically correlated with fuser temperature.
Resumo:
Visualisation provides a method to efficiently convey and understand the complex nature and processes of groundwater systems. This technique has been applied to the Lockyer Valley to aid in comprehending the current condition of the system. The Lockyer Valley in southeast Queensland hosts intensive irrigated agriculture sourcing groundwater from alluvial aquifers. The valley is around 3000 km2 in area and the alluvial deposits are typically 1-3 km wide and to 20-35 m deep in the main channels, reducing in size in subcatchments. The configuration of the alluvium is of a series of elongate “fingers”. In this roughly circular valley recharge to the alluvial aquifers is largely from seasonal storm events, on the surrounding ranges. The ranges are overlain by basaltic aquifers of Tertiary age, which overall are quite transmissive. Both runoff from these ranges and infiltration into the basalts provided ephemeral flow to the streams of the valley. Throughout the valley there are over 5,000 bores extracting alluvial groundwater, plus lesser numbers extracting from underlying sandstone bedrock. Although there are approximately 2500 monitoring bores, the only regularly monitored area is the formally declared management zone in the lower one third. This zone has a calibrated Modflow model (Durick and Bleakly, 2000); a broader valley Modflow model was developed in 2002 (KBR), but did not have extensive extraction data for detailed calibration. Another Modflow model focused on a central area river confluence (Wilson, 2005) with some local production data and pumping test results. A recent subcatchment simulation model incorporates a network of bores with short-period automated hydrographic measurements (Dvoracek and Cox, 2008). The above simulation models were all based on conceptual hydrogeological models of differing scale and detail.
Resumo:
The upper Condamine River in southern Queensland has formed extensive alluvial deposits which have been used for irrigation of cotton crops for over 40 years. Due to excessive use and long term drought conditions these groundwater resources are under substantial threat. This condition is now recognised by all stakeholders, and Qld Department of Environment and Resource Management (DERM) are currently undertaking a water planning process for the Central Condamine Alluvium with water users and other stakeholders. DERM aims to effectively demonstrate the character of the groundwater system and its current status, and notably the continued long-term drawdown of the watertable. It was agreed that 3D visualisation was an ideal tool to achieve this. The Groundwater Visualisation System (GVS) developed at QUT was utilised and the visualisation model developed in conjunction with DERM to achieve a planning-management tool for this particular application
Resumo:
In this paper we discuss an advanced, 3D groundwater visualisation and animation system that allows scientists, government agencies and community groups to better understand the groundwater processes that effect community planning and decision-making. The system is unique in that it has been designed to optimise community engagement. Although it incorporates a powerful visualisation engine, this open-source system can be freely distributed and boasts a simple user interface allowing individuals to run and investigate the models on their own PCs and gain intimate knowledge of the groundwater systems. The initial version of the Groundwater Visualisation System (GVS v1.0), was developed from a coastal delta setting (Bundaberg, QLD), and then applied to a basalt catchment area (Obi Obi Creek, Maleny, QLD). Several major enhancements have been developed to produce higher quality visualisations, including display of more types of data, support for larger models and improved user interaction. The graphics and animation capabilities have also been enhanced, notably the display of boreholes, depth logs and time-series water level surfaces. The GVS software remains under continual development and improvement
Resumo:
Rapid prototyping (RP) is a common name for several techniques, which read in data from computer-aided design (CAD) drawings and manufacture automatically threedimensional objects layer-by-layer according to the virtual design. The utilization of RP in tissue engineering enables the production of three-dimensional scaffolds with complex geometries and very fine structures. Adding micro- and nanometer details into the scaffolds improves the mechanical properties of the scaffold and ensures better cell adhesion to the scaffold surface. Thus, tissue engineering constructs can be customized according to the data acquired from the medical scans to match the each patient’s individual needs. In addition RP enables the control of the scaffold porosity making it possible to fabricate applications with desired structural integrity. Unfortunately, every RP process has its own unique disadvantages in building tissue engineering scaffolds. Hence, the future research should be focused into the development of RP machines designed specifically for fabrication of tissue engineering scaffolds, although RP methods already can serve as a link between tissue and engineering.
Three primary school students’ cognition about 3D rotation in a virtual reality learning environment
Resumo:
This paper reports on three primary school students’ explorations of 3D rotation in a virtual reality learning environment (VRLE) named VRMath. When asked to investigate if you would face the same direction when you turn right 45 degrees first then roll up 45 degrees, or when you roll up 45 degrees first then turn right 45 degrees, the students found that the different order of the two turns ended up with different directions in the VRLE. This was contrary to the students’ prior predictions based on using pen, paper and body movements. The findings of this study showed the difficulty young children have in perceiving and understanding the non-commutative nature of 3D rotation and the power of the computational VRLE in giving students experiences that they rarely have in real life with 3D manipulations and 3D mental movements.
Resumo:
We aim to demonstrate unaided visual 3D pose estimation and map reconstruction using both monocular and stereo vision techniques. To date, our work has focused on collecting data from Unmanned Aerial Vehicles, which generates a number of significant issues specific to the application. Such issues include scene reconstruction degeneracy from planar data, poor structure initialisation for monocular schemes and difficult 3D reconstruction due to high feature covariance. Most modern Visual Odometry (VO) and related SLAM systems make use of a number of sensors to inform pose and map generation, including laser range-finders, radar, inertial units and vision [1]. By fusing sensor inputs, the advantages and deficiencies of each sensor type can be handled in an efficient manner. However, many of these sensors are costly and each adds to the complexity of such robotic systems. With continual advances in the abilities, small size, passivity and low cost of visual sensors along with the dense, information rich data that they provide our research focuses on the use of unaided vision to generate pose estimates and maps from robotic platforms. We propose that highly accurate (�5cm) dense 3D reconstructions of large scale environments can be obtained in addition to the localisation of the platform described in other work [2]. Using images taken from cameras, our algorithm simultaneously generates an initial visual odometry estimate and scene reconstruction from visible features, then passes this estimate to a bundle-adjustment routine to optimise the solution. From this optimised scene structure and the original images, we aim to create a detailed, textured reconstruction of the scene. By applying such techniques to a unique airborne scenario, we hope to expose new robotic applications of SLAM techniques. The ability to obtain highly accurate 3D measurements of an environment at a low cost is critical in a number of agricultural and urban monitoring situations. We focus on cameras as such sensors are small, cheap and light-weight and can therefore be deployed in smaller aerial vehicles. This, coupled with the ability of small aerial vehicles to fly near to the ground in a controlled fashion, will assist in increasing the effective resolution of the reconstructed maps.