263 resultados para K-uniformly Convex Functions
Resumo:
This article applies social network analysis techniques to a case study of police corruption in order to produce findings which will assist in corruption prevention and investigation. Police corruption is commonly studied but rarely are sophisticated tools of analyse engaged to add rigour to the field of study. This article analyses the ‘First Joke’ a systemic and long lasting corruption network in the Queensland Police Force, a state police agency in Australia. It uses the data obtained from a commission of inquiry which exposed the network and develops hypotheses as to the nature of the networks structure based on existing literature into dark networks and criminal networks. These hypotheses are tested by entering the data into UCINET and analysing the outcomes through social network analysis measures of average path distance, centrality and density. The conclusions reached show that the network has characteristics not predicted by the literature.
Resumo:
Genomic and proteomic analyses have attracted a great deal of interests in biological research in recent years. Many methods have been applied to discover useful information contained in the enormous databases of genomic sequences and amino acid sequences. The results of these investigations inspire further research in biological fields in return. These biological sequences, which may be considered as multiscale sequences, have some specific features which need further efforts to characterise using more refined methods. This project aims to study some of these biological challenges with multiscale analysis methods and stochastic modelling approach. The first part of the thesis aims to cluster some unknown proteins, and classify their families as well as their structural classes. A development in proteomic analysis is concerned with the determination of protein functions. The first step in this development is to classify proteins and predict their families. This motives us to study some unknown proteins from specific families, and to cluster them into families and structural classes. We select a large number of proteins from the same families or superfamilies, and link them to simulate some unknown large proteins from these families. We use multifractal analysis and the wavelet method to capture the characteristics of these linked proteins. The simulation results show that the method is valid for the classification of large proteins. The second part of the thesis aims to explore the relationship of proteins based on a layered comparison with their components. Many methods are based on homology of proteins because the resemblance at the protein sequence level normally indicates the similarity of functions and structures. However, some proteins may have similar functions with low sequential identity. We consider protein sequences at detail level to investigate the problem of comparison of proteins. The comparison is based on the empirical mode decomposition (EMD), and protein sequences are detected with the intrinsic mode functions. A measure of similarity is introduced with a new cross-correlation formula. The similarity results show that the EMD is useful for detection of functional relationships of proteins. The third part of the thesis aims to investigate the transcriptional regulatory network of yeast cell cycle via stochastic differential equations. As the investigation of genome-wide gene expressions has become a focus in genomic analysis, researchers have tried to understand the mechanisms of the yeast genome for many years. How cells control gene expressions still needs further investigation. We use a stochastic differential equation to model the expression profile of a target gene. We modify the model with a Gaussian membership function. For each target gene, a transcriptional rate is obtained, and the estimated transcriptional rate is also calculated with the information from five possible transcriptional regulators. Some regulators of these target genes are verified with the related references. With these results, we construct a transcriptional regulatory network for the genes from the yeast Saccharomyces cerevisiae. The construction of transcriptional regulatory network is useful for detecting more mechanisms of the yeast cell cycle.
Resumo:
Ghrelin was first identified in 1999 by Kojima and colleagues (Kojima et al. 1999) as the natural ligand of an orphan G-protein coupled receptor, the Growth Hormone (GH) secretagogue receptor (GHS-R), which had been identified several years earlier through the actions of a growing number of synthetic growth hormone releasing peptides (GHRPs) and non-peptidyl GH secretagogues (Howard et al. 1996). Early studies, therefore, focussed on the actions of ghrelin as an important regulator of GH secretion. As a result Kojima et al (1999) designated this GH-releasing peptide, ghrelin (ghre is the Proto-Indo-European root of the word 'grow'). We now recognise that the functions of ghrelin extend well beyond its GH releasing actions and that it is a multi-functional peptide with both endocrine and autocrine/paracrine modes of action.
Resumo:
The ghrelin axis consists of the gene products of the ghrelin gene (GHRL), and their receptors, including the classical ghrelin receptor GHSR. While it is well-known that the ghrelin gene encodes the 28 amino acid ghrelin peptide hormone, it is now also clear that the locus encodes a range of other bioactive molecules, including novel peptides and non-coding RNAs. For many of these molecules, the physiological functions and cognate receptor(s) remain to be determined. Emerging research techniques, including proteogenomics, are likely to reveal further ghrelin axis-derived molecules. Studies of the role of ghrelin axis genes, peptides and receptors, therefore, promises to be a fruitful area of basic and clinical research in years to come.
Resumo:
In asset intensive industries such as mining, oil & gas, utilities etc. most of the capital expenditure happens on acquiring engineering assets. Process of acquiring assets is called as “Procurement” or “Acquisition”. An asset procurement decision should be taken in consideration with the installation, commissioning, operational, maintenance and disposal needs of an asset or spare. However, such cross-functional collaboration and communication does not appear to happen between engineering, maintenance, warehousing and procurement functions in many asset intensive industries. Acquisition planning and execution are two distinct parts of asset acquisition process. Acquisition planning or procurement planning is responsible for determining exactly what is required to be purchased. It is important that an asset acquisition decision is the result of cross-functional decision making process. An acquisition decision leads to a formal purchase order. Most costly asset decisions occur even before they are acquired. Therefore, acquisition decision should be an outcome of an integrated planning & decision making process. Asset intensive organizations both, Government and non Government in Australia spent AUD 102.5 Billion on asset acquisition in year 2008-09. There is widespread evidence of many assets and spare not being used or utilized and in the end are written off. This clearly shows that many organizations end up buying assets or spares which were not required or non-conforming to the needs of user functions. It is due the fact that strategic and software driven procurement process do not consider all the requirements from various functions within the organization which contribute to the operation and maintenance of the asset over its life cycle. There is a lot of research done on how to implement an effective procurement process. There are numerous software solutions available for executing a procurement process. However, not much research is done on how to arrive at a cross functional procurement planning process. It is also important to link procurement planning process to procurement execution process. This research will discuss ““Acquisition Engineering Model” (AEM) framework, which aims at assisting acquisition decision making based on various criteria to satisfy cross-functional organizational requirements. Acquisition Engineering Model (AEM) will consider inputs from corporate asset management strategy, production management, maintenance management, warehousing, finance and HSE. Therefore, it is essential that the multi-criteria driven acquisition planning process is carried out and its output is fed to the asset acquisition (procurement execution) process. An effective procurement decision making framework to perform acquisition planning which considers various functional criteria will be discussed in this paper.
Resumo:
In this paper we present pyktree, an implementation of the K-tree algorithm in the Python programming language. The K-tree algorithm provides highly balanced search trees for vector quantization that scales up to very large data sets. Pyktree is highly modular and well suited for rapid-prototyping of novel distance measures and centroid representations. It is easy to install and provides a python package for library use as well as command line tools.
Resumo:
Optimal design for generalized linear models has primarily focused on univariate data. Often experiments are performed that have multiple dependent responses described by regression type models, and it is of interest and of value to design the experiment for all these responses. This requires a multivariate distribution underlying a pre-chosen model for the data. Here, we consider the design of experiments for bivariate binary data which are dependent. We explore Copula functions which provide a rich and flexible class of structures to derive joint distributions for bivariate binary data. We present methods for deriving optimal experimental designs for dependent bivariate binary data using Copulas, and demonstrate that, by including the dependence between responses in the design process, more efficient parameter estimates are obtained than by the usual practice of simply designing for a single variable only. Further, we investigate the robustness of designs with respect to initial parameter estimates and Copula function, and also show the performance of compound criteria within this bivariate binary setting.
Resumo:
The assumption that mesenchymal stromal cell (MSC)-based therapies are capable of augmenting physiological regeneration processes has fostered intensive basic and clinical research activities. However, to achieve sustained therapeutic success in vivo, not only the biological, but also the mechanical microenvironment of MSCs during these regeneration processes needs to be taken into account. This is especially important for e.g., bone fracture repair, since MSCs present at the fracture site undergo significant biomechanical stimulation. This study has therefore investigated cellular characteristics and the functional behaviour of MSCs in response to mechanical loading. Our results demonstrated a reduced expression of MSC surface markers CD73 (ecto-5’-nucleotidase) and CD29 (integrin β1) after loading. On the functional level, loading led to a reduced migration of MSCs. Both effects persisted for a week after the removal of the loading stimulus. Specifi c inhibition of CD73/CD29 demonstrated their substrate dependent involvement in MSC migration after loading. These results were supported by scanning electron microscopy images and phalloidin staining of actin fi laments displaying less cell spreading, lamellipodia formation and actin accumulations. Moreover, focal adhesion kinase and Src-family kinases were identified as candidate downstream targets of CD73/CD29 that might contribute to the mechanically induced decrease in MSC migration. These results suggest that MSC migration is controlled by CD73 CD29, which in turn are regulated by mechanical stimulation of cells. We therefore speculate that MSCs migrate into the fracture site, become mechanically entrapped, and thereby accumulate to fulfil their regenerative functions.
Resumo:
PCR-based cancer diagnosis requires detection of rare mutations in k- ras, p53 or other genes. The assumption has been that mutant and wild-type sequences amplify with near equal efficiency, so that they are eventually present in proportions representative of the starting material. Work on factor IX suggests that this assumption is invalid for one case of near- sequence identity. To test the generality of this phenomenon and its relevance to cancer diagnosis, primers distant from point mutations in p53 and k-ras were used to amplify wild-type and mutant sequences from these genes. A substantial bias against PCR amplification of mutants was observed for two regions of the p53 gene and one region of k-ras. For k-ras and p53, bias was observed when the wild-type and mutant sequences were amplified separately or when mixed in equal proportions before PCR. Bias was present with proofreading and non-proofreading polymerase. Mutant and wild-type segments of the factor V, cystic fibrosis transmembrane conductance regulator and prothrombin genes were amplified and did not exhibit PCR bias. Therefore, the assumption of equal PCR efficiency for point mutant and wild-type sequences is invalid in several systems. Quantitative or diagnostic PCR will require validation for each locus, and enrichment strategies may be needed to optimize detection of mutants.
Resumo:
The molecular structure of the mineral archerite ((K,NH4)H2PO4) has been determined and compared with that of biphosphammite ((NH4,K)H2PO4). Raman spectroscopy and infrared spectroscopy has been used to characterise these ‘cave’ minerals. Both minerals originated from the Murra-el-elevyn Cave, Eucla, Western Australia. The mineral is formed by the reaction of the chemicals in bat guano with calcite substrates. Raman and infrared bands are assigned to H2PO4-, OH and NH stretching vibrations. The Raman band at 981 cm-1 is assigned to the HOP stretching vibration. Bands in the 1200 to 1800 cm-1 region are associated with NH4+ bending modes. The molecular structure of the two minerals appear to be very similar, and it is therefore concluded that the two minerals are identical.
Resumo:
Many of the classification algorithms developed in the machine learning literature, including the support vector machine and boosting, can be viewed as minimum contrast methods that minimize a convex surrogate of the 0–1 loss function. The convexity makes these algorithms computationally efficient. The use of a surrogate, however, has statistical consequences that must be balanced against the computational virtues of convexity. To study these issues, we provide a general quantitative relationship between the risk as assessed using the 0–1 loss and the risk as assessed using any nonnegative surrogate loss function. We show that this relationship gives nontrivial upper bounds on excess risk under the weakest possible condition on the loss function—that it satisfies a pointwise form of Fisher consistency for classification. The relationship is based on a simple variational transformation of the loss function that is easy to compute in many applications. We also present a refined version of this result in the case of low noise, and show that in this case, strictly convex loss functions lead to faster rates of convergence of the risk than would be implied by standard uniform convergence arguments. Finally, we present applications of our results to the estimation of convergence rates in function classes that are scaled convex hulls of a finite-dimensional base class, with a variety of commonly used loss functions.
Resumo:
We propose new bounds on the error of learning algorithms in terms of a data-dependent notion of complexity. The estimates we establish give optimal rates and are based on a local and empirical version of Rademacher averages, in the sense that the Rademacher averages are computed from the data, on a subset of functions with small empirical error. We present some applications to classification and prediction with convex function classes, and with kernel classes in particular.
Resumo:
One of the nice properties of kernel classifiers such as SVMs is that they often produce sparse solutions. However, the decision functions of these classifiers cannot always be used to estimate the conditional probability of the class label. We investigate the relationship between these two properties and show that these are intimately related: sparseness does not occur when the conditional probabilities can be unambiguously estimated. We consider a family of convex loss functions and derive sharp asymptotic results for the fraction of data that becomes support vectors. This enables us to characterize the exact trade-off between sparseness and the ability to estimate conditional probabilities for these loss functions.