79 resultados para Inflammation mediators
Resumo:
Macrophages have the capacity to rapidly secrete a wide range of inflammatory mediators that influence the development and extent of an inflammatory response. Newly synthesized and/or preformed stored cytokines and other inflammatory mediators are released upon stimulation, the timing, and volume of which is highly regulated. To finely tune this process, secretion is regulated at many levels; at the level of transcription and translation and post-translationally at the endoplasmic reticulum (ER), Golgi, and at or near the cell surface. Here, we discuss recent advances in deciphering these cytokine pathways in macrophages, focusing on recent discoveries regarding the cellular machinery and mechanisms implicated in the synthesis, trafficking, and secretion of cytokines. The specific roles of trafficking machinery including chaperones, GTPases, cytoskeletal proteins, and SNARE membrane fusion proteins will be discussed.
Resumo:
Cytokines are important mediators of various aspects of health and disease, including appetite, glucose and lipid metabolism, insulin sensitivity, skeletal muscle hypertrophy and atrophy. Over the past decade or so, considerable attention has focused on the potential for regular exercise to counteract a range of disease states by modulating cytokine production. Exercise stimulates moderate to large increases in the circulating concentrations of interleukin (IL)-6, IL-8, IL-10, IL-1 receptor antagonist, granulocyte-colony stimulating factor, and smaller increases in tumor necrosis factor-α, monocyte chemotactic protein-1, IL-1β, brain-derived neurotrophic factor, IL-12p35/p40 and IL-15. Although many of these cytokines are also expressed in skeletal muscle, not all are released from skeletal muscle into the circulation during exercise. Conversely, some cytokines that are present in the circulation are not expressed in skeletal muscle after exercise. The reasons for these discrepant cytokine responses to exercise are unclear. In this review, we address these uncertainties by summarizing the capacity of skeletal muscle cells to produce cytokines, analyzing other potential cellular sources of circulating cytokines during exercise, and discussing the soluble factors and intracellular signaling pathways that regulate cytokine synthesis (e.g., RNA-binding proteins, microRNAs, suppressor of cytokine signaling proteins, soluble receptors).
Resumo:
Hormesis enco 16 mpasses the notion that low levels of stress stimulate or upregulate 17 existing cellular and molecular pathways that improve the capacity of cells and organisms to 18 withstand greater stress. This notion underlies much of what we know about how exercise 19 conditions the body and induces long-term adaptations. During exercise, the body is 20 exposed to various forms of stress, including thermal, metabolic, hypoxic, oxidative, and 21 mechanical stress. These stressors activate biochemical messengers, which in turn activate 22 various signaling pathways that regulate gene expression and adaptive responses. 23 Historically, antioxidant supplements, nonsteroidal anti-inflammatory drugs, and 24 cryotherapy have been favored to attenuate or counteract exercise-induced oxidative stress 25 and inflammation. However, reactive oxygen species and inflammatory mediators are key 26 signaling molecules in muscle, and such strategies may mitigate adaptations to exercise. 27 Conversely, withholding dietary carbohydrate and restricting muscle blood flow during 28 exercise may augment adaptations to exercise. In this review article, we combine, integrate, 29 and apply knowledge about the fundamental mechanisms of exercise adaptation. We also 30 critically evaluate the rationale for using interventions that target these mechanisms under 31 the overarching concept of hormesis. There is currently insufficient evidence to establish 32 whether these treatments exert dose-dependent effects on muscle adaptation. However, 33 there appears to be some dissociation between the biochemical/molecular effects and 34 functional/performance outcomes of some of these treatments. Although several of these 35 treatments influence common kinases, transcription factors and proteins, it remains to be 36 determined if these interventions complement or negate each other, and whether such 37 effects are strong enough to influence adaptations to exercise.
Resumo:
This study examined the role of heparan sulfate proteoglycans (HSPGs) in neural lineage differentiation of human mesenchymal stem cells (hMSCs). Several HSPGs were identified as potential new targets controlling neural fate specification and may be applied to the development of improved models to examine and repair brain damage. hMSCs were characterised throughout extended in vitro expansion for neural lineage potential (neurons, astrocytes, oligodendrocytes) and differentiated using terminal differentiation and intermediate sphere formation. Brain damage and neurological disorders caused by injury or disease affect a large number of people often resulting in lifelong disabilities. Multipotent mesenchymal stem cells have a large capacity for self-renewal and provide an excellent model to examine the regulation and contribution of both stem cells and their surrounding microenvironment to the repair of neural tissue damage.
Resumo:
This project has identified a molecular signature involved in functions critical to breast cancer progression and metastasis mediated by vitronectin, an abundant protein in human plasma and victornectin:insulin-like growth factor complexes. This may have significant implications in designing future therapeutic targets for patient with tumours overexpressing vitronectin and/or the components of the insulin-like growth factor system:vitronectin axis. In particular, the findings from this project have identified Cyr61 and CTGF as key mediators involved in vitroncetin- and insulin-like growth factor I: Insulin-like growth factor-binding protein:vitronectin-induced breast cancer cell survival and migration.
Resumo:
The transfusion of platelet concentrates (PCs) is widely used to treat thrombocytopenia and severe trauma. Ex vivo storage of PCs is associated with a storage lesion characterized by partial platelet activation and the release of soluble mediators, such as soluble CD40 ligand (sCD40L), RANTES, and interleukin (IL)-8. An in vitro whole blood culture transfusion model was employed to assess whether mediators present in PC supernatants (PC-SNs) modulated dendritic cell (DC)-specific inflammatory responses (intracellular staining) and the overall inflammatory response (cytometric bead array). Lipopolysaccharide (LPS) was included in parallel cultures to model the impact of PC-SNs on cell responses following toll-like receptor-mediated pathogen recognition. The impact of both the PC dose (10%, 25%) and ex vivo storage period was investigated [day 2 (D2), day 5 (D5), day 7 (D7)]. PC-SNs alone had minimal impact on DC-specific inflammatory responses and the overall inflammatory response. However, in the presence of LPS, exposure to PC-SNs resulted in a significant dose associated suppression of the production of DC IL-12, IL-6, IL-1a, tumor necrosis factor-a (TNF-a), and macrophage inflammatory protein (MIP)-1b and storage-associated suppression of the production of DC IL-10, TNF-a, and IL-8. For the overall inflammatory response, IL-6, TNF-a, MIP-1a, MIP-1b, and inflammatory protein (IP)-10 were significantly suppressed and IL-8, IL-10, and IL-1b significantly increased following exposure to PC-SNs in the presence of LPS. These data suggest that soluble mediators present in PCs significantly suppress DC function and modulate the overall inflammatory response, particularly in the presence of an infectious stimulus. Given the central role of DCs in the initiation and regulation of the immune response, these results suggest that modulation of the DC inflammatory profile is a probable mechanism contributing to transfusion-related complications.
Resumo:
Objective: To evaluate the presence of spinal inflammation with and without sacroiliac (SI) joint inflammation on magnetic resonance imaging (MRI) in patients with active nonradiographic axial spondyloarthritis (SpA), and to compare the disease characteristics of these subgroups. Methods: ABILITY-1 is a multicenter, randomized, controlled trial of adalimumab versus placebo in patients with nonradiographic axial SpA classified using the Assessment of SpondyloArthritis international Society axial SpA criteria. Baseline MRIs were centrally scored independently by 2 readers using the Spondyloarthritis Research Consortium of Canada (SPARCC) method for the SI joints and the SPARCC 6-discovertebral unit method for the spine. Positive evidence of inflammation on MRI was defined as a SPARCC score of >2 for either the SI joints or the spine. Results: Among patients with baseline SPARCC scores, 40% had an SI joint score of >2 and 52% had a spine score of >2. Forty-nine percent of patients with baseline SI joint scores of <2, and 58% of those with baseline SI joint scores of >2, had a spine score of >2. Comparison of baseline disease characteristics by baseline SI joint and spine scores showed that a greater proportion of patients in the subgroup with a baseline SPARCC score of >2 for both SI joints and spine were male, and patients with spine and SI joint scores of <2 were younger and had shorter symptom duration. SPARCC spine scores correlated with baseline symptom duration, and SI joint scores correlated negatively with the baseline Bath Ankylosing Spondylitis Disease Activity Index, but neither correlated with the baseline Ankylosing Spondylitis Disease Activity Score, total back pain, the patient's global assessment of disease activity, the Bath Ankylosing Spondylitis Functional Index, morning stiffness, nocturnal pain, or C-reactive protein level. Conclusion: Assessment by experienced readers showed that spinal inflammation on MRI might be observed in half of patients with nonradiographic axial SpA without SI joint inflammation.
Resumo:
The clinical efficacy of anti-immunoglobulin E (IgE) therapy indicates a central role for IgE in perpetuation of allergic inflammatory diseases. Omalizumab is now uti- lized in treatment of a wide variety of allergic conditions including severe asthma, allergic rhinitis, atopic dermati- tis, food allergy and urticaria either alone or adjunct with other therapies such as steroid administration or allergen- specific immunotherapy [1, 2]. Current research activity is focused on the cellular and molecular mechanisms by which IgE influences the immunopathogenesis of allergic disease [3]. Increased knowledge of how IgE exerts its effects will underpin effective clinical use of anti-IgE treatment. In this issue Kerzel et al. [4] investigate the effects of altered antibo dy repertoire on the outcomes of an experimental model of allergic asthma.
Resumo:
Background and purpose: Inflammation is a risk factor the vulnerable atheromatous plaque. This can be detected in vivo on high-resolution magnetic resonance (MR) imaging using a contrast agent, Sinerem™, an ultra-small super-paramagnetic iron oxide (USPIO). The aim of this study was to explore whether there is a difference in the degree of MR defined inflammation using USPIO particles, between symptomatic and asymptomatic carotid plaques. We report further on its T1 effect of enhancing the fibrous cap, which may allow dual contrast resolution of carotid atheroma. Methods: Twenty patients with carotid stenosis (10 symptomatic and 10 asymptomatic) underwent multi-sequence MR imaging before and 36 h post-USPIO infusion. Images were manually segmented into quadrants and signal change in each quadrant was calculated following USPIO administration. Mean signal change across all quadrants were compared between the two groups. Results: Symptomatic patients had significantly more quadrants with a signal drop than asymptomatic individuals (75% vs. 32%, p < 0.01). Asymptomatic plaques had more quadrants with signal enhancement than symptomatic ones (68% vs. 25%, p < 0.05); their mean signal change was also higher (46% vs. 15%, p < 0.01) and this appeared to correlate with a thicker fibrous cap on histology. Conclusions: Symptomatic patients had more quadrants with signal drop suggesting larger inflammatory infiltrates. Asymptomatic individuals showed significantly more enhancement possibly suggesting greater stability as a result of thicker fibrous caps. However, some asymptomatic plaques also had focal areas of signal drop, suggesting an occult macrophage burden. If validated by larger studies, USPIO may be a useful dual contrast agent able to improve risk stratification of patients with carotid stenosis and inform selection for intervention.
Resumo:
BACKGROUND AND PURPOSE Inflammation is a recognized risk factor for the vulnerable atherosclerotic plaque. The study explores the relationship between the degree of Magnetic Resonance (MR)"defined inflammation using Ultra Small Super-Paramagnetic Iron Oxide (USPIO) particles and the severity of luminal stenosis in asymptomatic carotid plaques. METHODS Seventy-one patients with an asymptomatic carotid stenosis of ĝ‰¥40% underwent multi-sequence USPIO-enhanced MR imaging. Stenosis severity was measured according to the NASCET and ECST methods. RESULTS No demonstrable relationship between inflammation as measured by USPIO-enhanced signal change and the degree of luminal stenosis was found. CONCLUSIONS Inflammation and stenosis are likely to be independent risk factors, although this needs to be further validated.
Resumo:
Objective: The aim of this study was to explore whether there is a relationship between the degree of MR-defined inflammation using ultra small super-paramagnetic iron oxide (USPIO) particles, and biomechanical stress using finite element analysis (FEA) techniques, in carotid atheromatous plaques. Methods and Results: 18 patients with angiographically proven carotid stenoses underwent multi-sequence MR imaging before and 36 h after USPIO infusion. T2 * weighted images were manually segmented into quadrants and the signal change in each quadrant normalised to adjacent muscle was calculated after USPIO administration. Plaque geometry was obtained from the rest of the multi-sequence dataset and used within a FEA model to predict maximal stress concentration within each slice. Subsequently, a new statistical model was developed to explicitly investigate the form of the relationship between biomechanical stress and signal change. The Spearman's rank correlation coefficient for USPIO enhanced signal change and maximal biomechanical stress was -0.60 (p = 0.009). Conclusions: There is an association between biomechanical stress and USPIO enhanced MR-defined inflammation within carotid atheroma, both known risk factors for plaque vulnerability. This underlines the complex interaction between physiological processes and biomechanical mechanisms in the development of carotid atheroma. However, this is preliminary data that will need validation in a larger cohort of patients.
Resumo:
Inflammation is a recognized risk factor for the vulnerable atherosclerotic plaque. USPIO-enhanced MRI imaging is a promising non-i nvasive method to identify high-risk atheromatous plaque inflammation in vivo in humans, in which areas of focal signal loss on MR images have been shown to correspond to the location of activated macrophages, typically at the shoulder regions of the plaque. This is the first report in humans describing simultaneous USPIO uptake within atheroma in two different arterial territories and again emphasises that atherosclerosis is a truly systemic disease. With further work, USPIO-enhanced MR imaging may be useful in identifying inflamed vulnerable atheromatous plaques in vivo, so refining patient selection for intervention and allowing appropriate early aggressive pharmacotherapy to prevent plaque rupture.
Resumo:
Background Ankylosing spondylitis (AS) is an immune-mediated arthritis particularly targeting the spine and pelvis and is characterised by inflammation, osteoproliferation and frequently ankylosis. Current treatments that predominately target inflammatory pathways have disappointing efficacy in slowing disease progression. Thus, a better understanding of the causal association and pathological progression from inflammation to bone formation, particularly whether inflammation directly initiates osteoproliferation, is required. Methods The proteoglycan-induced spondylitis (PGISp) mouse model of AS was used to histopathologically map the progressive axial disease events, assess molecular changes during disease progression and define disease progression using unbiased clustering of semi-quantitative histology. PGISp mice were followed over a 24-week time course. Spinal disease was assessed using a novel semi-quantitative histological scoring system that independently evaluated the breadth of pathological features associated with PGISp axial disease, including inflammation, joint destruction and excessive tissue formation (osteoproliferation). Matrix components were identified using immunohistochemistry. Results Disease initiated with inflammation at the periphery of the intervertebral disc (IVD) adjacent to the longitudinal ligament, reminiscent of enthesitis, and was associated with upregulated tumor necrosis factor and metalloproteinases. After a lag phase, established inflammation was temporospatially associated with destruction of IVDs, cartilage and bone. At later time points, advanced disease was characterised by substantially reduced inflammation, excessive tissue formation and ectopic chondrocyte expansion. These distinct features differentiated affected mice into early, intermediate and advanced disease stages. Excessive tissue formation was observed in vertebral joints only if the IVD was destroyed as a consequence of the early inflammation. Ectopic excessive tissue was predominantly chondroidal with chondrocyte-like cells embedded within collagen type II- and X-rich matrix. This corresponded with upregulation of mRNA for cartilage markers Col2a1, sox9 and Comp. Osteophytes, though infrequent, were more prevalent in later disease. Conclusions The inflammation-driven IVD destruction was shown to be a prerequisite for axial disease progression to osteoproliferation in the PGISp mouse. Osteoproliferation led to vertebral body deformity and fusion but was never seen concurrent with persistent inflammation, suggesting a sequential process. The findings support that early intervention with anti-inflammatory therapies will be needed to limit destructive processes and consequently prevent progression of AS.