184 resultados para Higher order derivatives


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The finite element method in principle adaptively divides the continuous domain with complex geometry into discrete simple subdomain by using an approximate element function, and the continuous element loads are also converted into the nodal load by means of the traditional lumping and consistent load methods, which can standardise a plethora of element loads into a typical numerical procedure, but element load effect is restricted to the nodal solution. It in turn means the accurate continuous element solutions with the element load effects are merely restricted to element nodes discretely, and further limited to either displacement or force field depending on which type of approximate function is derived. On the other hand, the analytical stability functions can give the accurate continuous element solutions due to element loads. Unfortunately, the expressions of stability functions are very diverse and distinct when subjected to different element loads that deter the numerical routine for practical applications. To this end, this paper presents a displacement-based finite element function (generalised element load method) with a plethora of element load effects in the similar fashion that never be achieved by the stability function, as well as it can generate the continuous first- and second-order elastic displacement and force solutions along an element without loss of accuracy considerably as the analytical approach that never be achieved by neither the lumping nor consistent load methods. Hence, the salient and unique features of this paper (generalised element load method) embody its robustness, versatility and accuracy in continuous element solutions when subjected to the great diversity of transverse element loads.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Quality in education at the tertiary level is constantly questioned, and increasingly “professional standards” are offered as the solution to the perceived decline in quality. Foucauldian archaeological analysis of teacher graduate and geography graduate standards in Australia is conducted, revealing tensions between the different document sets. Teacher graduate standards reflect two discourses (one of knowledge and understanding, and one of skills) that are anti-intellectual and based on jargon and formulaic prescriptions. In contrast, disciplinary standards give primacy to geography as an intellectual inquiry such that its knowledge and understanding, skills, and concepts lead to progressively higher order thinking in graduates.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We discuss three approaches to the use of technology as a teaching and learning tool that we are currently implementing for a target group of about one hundred second level engineering mathematics students. Central to these approaches is the underlying theme of motivating relatively poorly motivated students to learn, with the aim of improving learning outcomes. The approaches to be discussed have been used to replace, in part, more traditional mathematics tutorial sessions and lecture presentations. In brief, the first approach involves the application of constructivist thinking in the tertiary education arena, using technology as a computational and visual tool to create motivational knowledge conflicts or crises. The central idea is to model a realistic process of how scientific theory is actually developed, as proposed by Kuhn (1962), in contrast to more standard lecture and tutorial presentations. The second approach involves replacing procedural or algorithmic pencil-and-paper skills-consolidation exercises by software based tasks. Finally, the third approach aims at creating opportunities for higher order thinking via "on-line" exploratory or discovery mode tasks. The latter incorporates the incubation period method, as originally discussed by Rubinstein (1975) and others.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The requirement to monitor the rapid pace of environmental change due to global warming and to human development is producing large volumes of data but placing much stress on the capacity of ecologists to store, analyse and visualise that data. To date, much of the data has been provided by low level sensors monitoring soil moisture, dissolved nutrients, light intensity, gas composition and the like. However, a significant part of an ecologist’s work is to obtain information about species diversity, distributions and relationships. This task typically requires the physical presence of an ecologist in the field, listening and watching for species of interest. It is an extremely difficult task to automate because of the higher order difficulties in bandwidth, data management and intelligent analysis if one wishes to emulate the highly trained eyes and ears of an ecologist. This paper is concerned with just one part of the bigger challenge of environmental monitoring – the acquisition and analysis of acoustic recordings of the environment. Our intention is to provide helpful tools to ecologists – tools that apply information technologies and computational technologies to all aspects of the acoustic environment. The on-line system which we are building in conjunction with ecologists offers an integrated approach to recording, data management and analysis. The ecologists we work with have different requirements and therefore we have adopted the toolbox approach, that is, we offer a number of different web services that can be concatenated according to need. In particular, one group of ecologists is concerned with identifying the presence or absence of species and their distributions in time and space. Another group, motivated by legislative requirements for measuring habitat condition, are interested in summary indices of environmental health. In both case, the key issues are scalability and automation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This chapter describes the use of collaborative learning as an approach to enhance English language learning by students from non-English speaking backgrounds. Communicative Language Teaching (CLT) principles were applied to two case studies, one comprising of undergraduate English as Foreign Language Learners in Turkey and the other involved English as Second Language learners in Australia. Social constructivism inspired communicative language teaching using collaborative learning activities such as team work, interactive peer-based learning, and iterative stages of learning matrix were incorporated to enhance students' learning outcomes. Data collected after the CLT intervention was made up of field notes, reflective logs and focus group interviews which revealed complementarities, as well as subtle differences between the two cases. The findings were summarized as learning dispositions; speaking fluency and confidence; learning diagnostics and completion deficiencies; task engagement, flow theory and higher order thinking skills; in addition to self efficacy and development of student identity. CLT has the potential to provide a more inclusive and dynamic education for diverse learners through vital outcomes and benefits which resonate with the real world.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Reflection Questions • How does the collaborative reading workshop approach engage students in higher order thinking and deep engagement with text? • How does the collaborative reading workshop approach support students to be active citizens and critically literate? • How does the interaction and collaborative thinking in this approach contribute to the students’ intellectual engagement and the teacher’s pedagogical rigor? • How could this approach be implemented or adapted at your school?

Relevância:

80.00% 80.00%

Publicador:

Resumo:

PURPOSE. This study was conducted to determine the magnitude of pupil center shift between the illumination conditions provided by corneal topography measurement (photopic illuminance) and by Hartmann-Shack aberrometry (mesopic illuminance) and to investigate the importance of this shift when calculating corneal aberrations and for the success of wavefront-guided surgical procedures. METHODS. Sixty-two subjects with emmetropia underwent corneal topography and Hartmann-Shack aberrometry. Corneal limbus and pupil edges were detected, and the differences between their respective centers were determined for both procedures. Corneal aberrations were calculated using the pupil centers for corneal topography and for Hartmann-Shack aberrometry. Bland-Altmann plots and paired t-tests were used to analyze the differences between corneal aberrations referenced to the two pupil centers. RESULTS. The mean magnitude (modulus) of the displacement of the pupil with the change of the illumination conditions was 0.21 ± 0.11 mm. The effect of this pupillary shift was manifest for coma corneal aberrations for 5-mm pupils, but the two sets of aberrations calculated with the two pupil positions were not significantly different. Sixty-eight percent of the population had differences in coma smaller than 0.05 µm, and only 4% had differences larger than 0.1 µm. Pupil displacement was not large enough to significantly affect other higher-order Zernike modes. CONCLUSIONS. Estimated corneal aberrations changed slightly between photopic and mesopic illumination conditions given by corneal topography and Hartmann-Shack aberrometry. However, this systematic pupil shift, according to the published tolerances ranges, is enough to deteriorate the optical quality below the theoretically predicted diffraction limit of wavefront-guided corneal surgery.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We investigated the limits at which blur due to defocus, crossed-cylinder astigmatism, and trefoil became noticeable, troublesome or objectionable. Black letter targets (0.1, 0.35 and 0.6 logMAR) were presented on white backgrounds. Subjects were cyclopleged and had effectively 5 mm pupils. Blur was induced with a deformable, adaptive-optics mirror operating under open-loop conditions. Mean defocus blur limits of six subjects with uncorrected intrinsic higher-order ocular aberrations ranged from 0.18 ± 0.08 D (noticeable blur criterion, 0.1 logMAR) to 1.01 ± 0.27 D (objectionable blur criterion, 0.6 logMAR. Crossed-cylinder astigmatic blur limits were approximately 90% of those for defocus, but with considerable meridional influences. In two of the subjects, the intrinsic aberrations of the eye were subsequently corrected before the defocus and astigmatic blur were added. This resulted in only minor reductions in their blur limits. When assessed with trefoil blur and corrected intrinsic ocular aberrations, the ratio of objectionable to noticeable blur limits in these two subjects was much higher for trefoil (3.5) than for defocus (2.5) and astigmatism (2.2).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We extended an earlier study (Vision Research, 45, 1967–1974, 2005) in which we investigated limits at which induced blur of letter targets becomes noticeable, troublesome and objectionable. Here we used a deformable adaptive optics mirror to vary spherical defocus for conditions of a white background with correction of astigmatism; a white background with reduction of all aberrations other than defocus; and a monochromatic background with reduction of all aberrations other than defocus. We used seven cyclopleged subjects, lines of three high-contrast letters as targets, 3–6 mm artificial pupils, and 0.1–0.6 logMAR letter sizes. Subjects used a method of adjustment to control the defocus component of the mirror to set the 'just noticeable', 'just troublesome' and 'just objectionable' defocus levels. For the white-no adaptive optics condition combined with 0.1 logMAR letter size, mean 'noticeable' blur limits were ±0.30, ±0.24 and ±0.23 D at 3, 4 and 6 mm pupils, respectively. White-adaptive optics and monochromatic-adaptive optics conditions reduced blur limits by 8% and 20%, respectively. Increasing pupil size from 3–6 mm decreased blur limits by 29%, and increasing letter size increased blur limits by 79%. Ratios of troublesome to noticeable, and of objectionable to noticeable, blur limits were 1.9 and 2.7 times, respectively. The study shows that the deformable mirror can be used to vary defocus in vision experiments. Overall, the results of noticeable, troublesome and objectionable blur agreed well with those of the previous study. Attempting to reduce higher-order aberrations or chromatic aberrations, reduced blur limits to only a small extent.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose: To investigate the effect of orthokeratology on peripheral aberrations in two myopic volunteers. Methods: The subjects wore reverse geometry orthokeratology lenses overnight and were monitored for 2 weeks of wear. They underwent corneal topography, peripheral refraction (out to ±34° along the horizontal visual field) and peripheral aberration measurements across the 42° × 32° central visual field using a modified Hartmann-Shack aberrometer. Results: Spherical equivalent refraction was corrected for the central 25° of the visual fields beyond which it gradually returned to its preorthokeratology values. There were increases in axial coma, spherical aberration, higher order root mean square aberrations, and total root-mean-squared aberrations (excluding defocus). The rates of change of vertical and horizontal coma across the field changed in sign. Total root mean square aberrations showed a quadratic rate of change across the visual field which was greater subsequent to orthokeratology. Conclusion: Although orthokeratology can correct peripheral relative hypermetropia it induces dramatic increases in higher-order aberrations across the field

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We determined the foveal Stiles-Crawford effect (SCE) as a function of up to 8D accommodation stimulus in six young emmetropes and six young myopes using a psychophysical two-channel Maxwellian system in which the threshold luminance increment of a 1 mm spot entering through variable positions in the pupil was determined against a background formed by a 4 mm spot entering the pupil centrally. The SCE became steeper in both groups with increasing accommodation stimulus, but with no systematic shift of the peak. Combining the data of both groups gave significant increases in directionality of 15-20% in horizontal and vertical pupil meridians with 6D of accommodation. However, additional experiments indicated that much of this was an artefact of higher order aberrations and accommodative lag. Thus, there appears to be little changes in orientation or directionality in the SCE with accommodation stimulus levels up to 6 D, but it is possible that changes may occur at very high accommodation levels

Relevância:

80.00% 80.00%

Publicador:

Resumo:

PURPOSE: To compare the repeatability within anterior corneal topography measurements and agreement between measurements with the Pentacam HR rotating Scheimpflug camera and with a previously validated Placido disk–based videokeratoscope (Medmont E300). ------ SETTING: Contact Lens and Visual Optics Laboratory, School of Optometry, Queensland University of Technology, Brisbane, Queensland, Australia. ----- METHODS: Normal eyes in 101 young adult subjects had corneal topography measured using the Scheimpflug camera (6 repeated measurements) and videokeratoscope (4 repeated measurements). The best-fitting axial power corneal spherocylinder was calculated and converted into power vectors. Corneal higher-order aberrations (HOAs) (up to the 8th Zernike order) were calculated using the corneal elevation data from each instrument. ----- RESULTS: Both instruments showed excellent repeatability for axial power spherocylinder measurements (repeatability coefficients <0.25 diopter; intraclass correlation coefficients >0.9) and good agreement for all power vectors. Agreement between the 2 instruments was closest when the mean of multiple measurements was used in analysis. For corneal HOAs, both instruments showed reasonable repeatability for most aberration terms and good correlation and agreement for many aberrations (eg, spherical aberration, coma, higher-order root mean square). For other aberrations (eg, trefoil and tetrafoil), the 2 instruments showed relatively poor agreement. ----- CONCLUSIONS: For normal corneas, the Scheimpflug system showed excellent repeatability and reasonable agreement with a previously validated videokeratoscope for the anterior corneal axial curvature best-fitting spherocylinder and several corneal HOAs. However, for certain aberrations with higher azimuthal frequencies, the Scheimpflug system had poor agreement with the videokeratoscope; thus, caution should be used when interpreting these corneal aberrations with the Scheimpflug system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aberrations affect image quality of the eye away from the line of sight as well as along it. High amounts of lower order aberrations are found in the peripheral visual field and higher order aberrations change away from the centre of the visual field. Peripheral resolution is poorer than that in central vision, but peripheral vision is important for movement and detection tasks (for example driving) which are adversely affected by poor peripheral image quality. Any physiological process or intervention that affects axial image quality will affect peripheral image quality as well. The aim of this study was to investigate the effects of accommodation, myopia, age, and refractive interventions of orthokeratology, laser in situ keratomileusis and intraocular lens implantation on the peripheral aberrations of the eye. This is the first systematic investigation of peripheral aberrations in a variety of subject groups. Peripheral aberrations can be measured either by rotating a measuring instrument relative to the eye or rotating the eye relative to the instrument. I used the latter as it is much easier to do. To rule out effects of eye rotation on peripheral aberrations, I investigated the effects of eye rotation on axial and peripheral cycloplegic refraction using an open field autorefractor. For axial refraction, the subjects fixated at a target straight ahead, while their heads were rotated by ±30º with a compensatory eye rotation to view the target. For peripheral refraction, the subjects rotated their eyes to fixate on targets out to ±34° along the horizontal visual field, followed by measurements in which they rotated their heads such that the eyes stayed in the primary position relative to the head while fixating at the peripheral targets. Oblique viewing did not affect axial or peripheral refraction. Therefore it is not critical, within the range of viewing angles studied, if axial and peripheral refractions are measured with rotation of the eye relative to the instrument or rotation of the instrument relative to the eye. Peripheral aberrations were measured using a commercial Hartmann-Shack aberrometer. A number of hardware and software changes were made. The 1.4 mm range limiting aperture was replaced by a larger aperture (2.5 mm) to ensure all the light from peripheral parts of the pupil reached the instrument detector even when aberrations were high such as those occur in peripheral vision. The power of the super luminescent diode source was increased to improve detection of spots passing through the peripheral pupil. A beam splitter was placed between the subjects and the aberrometer, through which they viewed an array of targets on a wall or projected on a screen in a 6 row x 7 column matrix of points covering a visual field of 42 x 32. In peripheral vision, the pupil of the eye appears elliptical rather than circular; data were analysed off-line using custom software to determine peripheral aberrations. All analyses in the study were conducted for 5.0 mm pupils. Influence of accommodation on peripheral aberrations was investigated in young emmetropic subjects by presenting fixation targets at 25 cm and 3 m (4.0 D and 0.3 D accommodative demands, respectively). Increase in accommodation did not affect the patterns of any aberrations across the field, but there was overall negative shift in spherical aberration across the visual field of 0.10 ± 0.01m. Subsequent studies were conducted with the targets at a 1.2 m distance. Young emmetropes, young myopes and older emmetropes exhibited similar patterns of astigmatism and coma across the visual field. However, the rate of change of coma across the field was higher in young myopes than young emmetropes and was highest in older emmetropes amongst the three groups. Spherical aberration showed an overall decrease in myopes and increase in older emmetropes across the field, as compared to young emmetropes. Orthokeratology, spherical IOL implantation and LASIK altered peripheral higher order aberrations considerably, especially spherical aberration. Spherical IOL implantation resulted in an overall increase in spherical aberration across the field. Orthokeratology and LASIK reversed the direction of change in coma across the field. Orthokeratology corrected peripheral relative hypermetropia through correcting myopia in the central visual field. Theoretical ray tracing demonstrated that changes in aberrations due to orthokeratology and LASIK can be explained by the induced changes in radius of curvature and asphericity of the cornea. This investigation has shown that peripheral aberrations can be measured with reasonable accuracy with eye rotation relative to the instrument. Peripheral aberrations are affected by accommodation, myopia, age, orthokeratology, spherical intraocular lens implantation and laser in situ keratomileusis. These factors affect the magnitudes and patterns of most aberrations considerably (especially coma and spherical aberration) across the studied visual field. The changes in aberrations across the field may influence peripheral detection and motion perception. However, further research is required to investigate how the changes in aberrations influence peripheral detection and motion perception and consequently peripheral vision task performance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Small long wavelength lights (≤ 1’ arc) change colour appearance with positive defocus, appearing yellow or white. I investigated influences of longitudinal chromatic aberration and monochromatic aberrations on colour appearance of small narrow band lights. Seven cyclopleged participants viewed a small light (1’ arc diameter, λmax range 510 - 628 nm) centred within a 4.6’ black annulus and surrounded by a uniform white field under photopic light levels. An optical trombone varied focus. Participants were required to vary the focus by moving the optical trombone in either positive or negative direction and report when they noticed a change in appearance of the defocused narrow band light. Longitudinal chromatic aberration was controlled using a Powell achromatizing lens and its doublet and triplet components that neutralized, doubled and reversed the eye’s chromatic aberration, respectively. Changes in colour appearance for a 628 nm light occurred without any lens at +0.5 ± 0.2D defocus and with the doublet at +0.6 ± 0.2 D. The achromatizing lens did not affect appearance and the phenomenon was evident with the triplet for negative defocus (-0.5 ± 0.3 D). Adaptive optics correction of astigmatism and higher order monochromatic aberration did not affect magnitude significantly. Colour changes occurred despite a range of participant L/M cone ratios. Direction of change in colour appearance was reversed for short compared to long wavelengths. We conclude that longitudinal chromatic aberrations, but not monochromatic aberrations, are involved in changing appearance of small lights with defocus. Additional neuronal mechanisms that may contribute to the colour changes are considered.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A common optometric problem is to specify the eye’s ocular aberrations in terms of Zernike coefficients and to reduce that specification to a prescription for the optimum sphero-cylindrical correcting lens. The typical approach is first to reconstruct wavefront phase errors from measurements of wavefront slopes obtained by a wavefront aberrometer. This paper applies a new method to this clinical problem that does not require wavefront reconstruction. Instead, we base our analysis of axial wavefront vergence as inferred directly from wavefront slopes. The result is a wavefront vergence map that is similar to the axial power maps in corneal topography and hence has a potential to be favoured by clinicians. We use our new set of orthogonal Zernike slope polynomials to systematically analyse details of the vergence map analogous to Zernike analysis of wavefront maps. The result is a vector of slope coefficients that describe fundamental aberration components. Three different methods for reducing slope coefficients to a spherocylindrical prescription in power vector forms are compared and contrasted. When the original wavefront contains only second order aberrations, the vergence map is a function of meridian only and the power vectors from all three methods are identical. The differences in the methods begin to appear as we include higher order aberrations, in which case the wavefront vergence map is more complicated. Finally, we discuss the advantages and limitations of vergence map representation of ocular aberrations.