172 resultados para GRAPHENE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The unique properties of graphene and carbon nanotubes made them the most promising nanomaterials attracting enormous attention, due to the prospects for applications in various nanodevices, from nanoelectronics to sensors and energy conversion devices. Here we report on a novel deterministic, single-step approach to simultaneous production and magnetic separation of graphene flakes and carbon nanotubes in an arc discharge by splitting the high-temperature growth and low-temperature separation zones using a non-uniform magnetic field and tailor-designed catalyst alloy, and depositing nanotubes and graphene in different areas. Our results are very relevant to the development of commercially-viable, single-step production of bulk amounts of high-quality graphene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the study of the thermal transport management of monolayer graphene allotrope nanoribbons (size ∼20 × 4 nm2) by the modulation of their structures via molecular dynamics simulations. The thermal conductivity of graphyne (GY)-like geometries is observed to decrease monotonously with increasing number of acetylenic linkages between adjacent hexagons. Strikingly, by incorporating those GY or GY-like structures, the thermal performance of graphene can be effectively engineered. The resulting hetero-junctions possess a sharp local temperature jump at the interface, and show a much lower effective thermal conductivity due to the enhanced phonon–phonon scattering. More importantly, by controlling the percentage, type and distribution pattern of the GY or GY-like structures, the hetero-junctions are found to exhibit tunable thermal transport properties (including the effective thermal conductivity, interfacial thermal resistance and rectification). This study provides a heuristic guideline to manipulate the thermal properties of 2D carbon networks, ideal for application in thermoelectric devices with strongly suppressed thermal conductivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Graphene has received great interest from researchers all over the world owing to its unique properties. Much of the excitement surrounding graphene is due to its remarkable properties and inherent quantum effects. These effects and properties make it a desirable material for the fabrication of new devices. Graphene has a plethora of potential uses including gas and molecular sensors, electronics, spintronics and optics [1-7]. Interestingly, some of these properties have been known about since before the material was even isolated due to a considerable amount of theoretical work and simulations. The material was to some extent a condensed matter modelers "toy" as it was used as a benchmark 2D material Graphene had been used for a long time as the fundamental building block of many other carbon structures...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of graphene oxide (GO) on the mechanical properties and the curing reaction of Diglycidyl Ether of Bisphenol A/F and Triethylenetetramine epoxy system was investigated. GO was prepared by oxidation of graphite flakes and characterized by spectroscopic and microscopic techniques. Epoxy nanocomposites were fabricated with different GO loading by solution mixing technique. It was found that incorporation of small amount of GO into the epoxy matrix significantly enhanced the mechanical properties of the epoxy. In particular, model I fracture toughness was increased by nearly 50% with the addition of 0.1 wt. % GO to epoxy. The toughening mechanism was understood by fractography analysis of the tested samples. The more irregular, coarse, and multi-plane fracture surfaces of the epoxy/GO nanocomposites were observed. This implies that the two-dimensional GO sheets effectively disturbed and deflected the crack propagation. At 0.5 wt. % GO, elastic modulus was ~35% greater than neat epoxy. Differential scanning calorimetry (DSC) results showed that GO addition moderately affect the glass transition temperature (Tg) of epoxy. The maximum decrease of Tg by ~7 oC was shown for the nanocomposite with 0.5 wt. % GO. DSC results further revealed that GO significantly hindered the cure reaction in the epoxy system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Piezoelectric energy harvesters can be used to convert ambient energy into electrical energy and power small autonomous devices. In recent years, massive effort has been made to improve the energy harvesting ability in piezoelectric materials. In this study, reduced graphene oxide was added into poly(vinylidene fluoride) to fabricate the piezoelectric nanocomposite films. Open-circuit voltage and electrical power harvesting experiments showed remarkable enhancement in the piezoelectricity of the fabricated poly(vinylidene fluoride)/reduced graphene oxide nanocomposite, especially at an optimal reduced graphene oxide content of 0.05 wt%. Compared to pristine poly(vinylidene fluoride) films, the open-circuit voltage, the density of harvested power of alternating current, and direct current of the poly(vinylidene fluoride)/reduced graphene oxide nanocomposite films increased by 105%, 153%, and 233%, respectively, indicating a great potential for a broad range of applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vertical graphene nanosheets have advantages over their horizontal counterparts, primarily due to the larger surface area available in the vertical systems. Vertical sheets can accommodate more functional particles, and due to the conduction and optical properties of thin graphene, these structures can find niche applications in the development of sensing and energy storage devices. This work is a combined experimental and theoretical study that reports on the synthesis and optical responses of vertical sheets decorated with gold nanoparticles. The findings help in interpreting optical responses of these hybrid graphene structures and are relevant to the development of future sensing platforms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The excellent multi-functional properties of carbon nanotube (CNT) and graphene have enabled them as appealing building blocks to construct 3D carbon-based nanomaterials or nanostructures. The recently reported graphene nanotube hybrid structure (GNHS) is one of the representatives of such nanostructures. This work investigated the relationships between the mechanical properties of the GNHS and its structure basing on large-scale molecular dynamics simulations. It is found that increasing the length of the constituent CNTs, the GNHS will have a higher Young’s modulus and yield strength. Whereas, no strong correlation is found between the number of graphene layers and Young’s modulus and yield strength, though more graphene layers intends to lead to a higher yield strain. In the meanwhile, the presences of multi-wall CNTs are found to greatly strengthen the hybrid structure. Generally, the hybrid structures exhibit a brittle behavior and the failure initiates from the connecting regions between CNT and graphene. More interestingly, affluent formations of monoatomic chains and rings are found at the fracture region. This study provides an in-depth understanding of the mechanical performance of the GNHSs while varying their structures, which will shed lights on the design and also the applications of the carbon-based nanostructures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is a comprehensive and deep investigation on graphene and graphene-polymer nanocomposites. It explores the strong structure-property relationships in both graphene and graphene-based polymeric nanocomposites. A number of significant conclusions, including failure mechanism in graphene, interfacial load transfer and thermal transport mechanisms in graphene-polymer nanocomposites, have been drawn through both atomistic simulations and theoretical analysis. These results can provide direct guidelines for development of new graphene-based materials and devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Schottky barrier solar cells based on graphene/n-silicon heterojunction have been fabricated and characterized and the effect of graphene molecular doping by HNO3 on the solar cells performances have been analyzed. Different doping conditions and thermal annealing processes have been tested to asses and optimize the stability of the devices. The PCE of the cells increases after the treatment by HNO3 and reaches 5% in devices treated at 200 °C immediately before the exposition to the oxidant. Up to now our devices retain about 80% of efficiency over a period of two weeks, which represents a good stability result for similar devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transfer of chemical vapor deposited graphene is a crucial process, which can affect the quality of the transferred films and compromise their application in devices. Finding a robust and intrinsically clean material capable of easing the transfer of graphene without interfering with its properties remains a challenge. We here propose the use of an organic compound, cyclododecane, as a transfer material. This material can be easily spin coated on graphene and assist the transfer, leaving no residues and requiring no further removal processes. The effectiveness of this transfer method for few-layer graphene on a large area was evaluated and confirmed by microscopy, Raman spectroscopy, x-ray photoemission spectroscopy, and four-point probe measurements. Schottky-barrier solar cells with few-layer graphene were fabricated on silicon wafers by using the cyclododecane transfer method and outperformed reference cells made by standard methods.