149 resultados para Folha de S.Paulo - First page - violence
Resumo:
As ambient computing blends into the fabric of the modern urban environment developing a positive interplay between people, places, and technology to create enlivened, interactive cities becomes a necessary priority in how we imagine, understand, design, and develop cities. Designing technology for art, culture and gastronomic experiences, that are rich in community, can provide the means for collaborative action to (re)create cities that are lively, engaging, and promote a sense of well being as well as belonging.
Resumo:
This workshop is a continuation and extension to the successful past workshops including [4, 5, 6]. The workshop addresses the opportunities and challenges for the design of digital interactive systems that engage individuals in critical reflection on their everyday food practices - including designing for engagement in more environmentally aware, socially inclusive, and healthier behaviour. These three themes represent the focus of much recent HCI work related to food. The workshop aims to further the conversation on these themes through understanding specifically how the process of critical reflection can be encouraged by interactive technology. While the focus will be on food as an application area, the intention is to also explore, more generally, how the process of critical reflection can be facilitated through interactive technology. The workshop provides a unique forum to discuss existing theoretical and pragmatic approaches, and to envision novel ways to design technology that encourages sustained critical reflection.
Resumo:
This work-in-progress paper presents an ensemble-based model for detecting and mitigating Distributed Denial-of-Service (DDoS) attacks, and its partial implementation. The model utilises network traffic analysis and MIB (Management Information Base) server load analysis features for detecting a wide range of network and application layer DDoS attacks and distinguishing them from Flash Events. The proposed model will be evaluated against realistic synthetic network traffic generated using a software-based traffic generator that we have developed as part of this research. In this paper, we summarise our previous work, highlight the current work being undertaken along with preliminary results obtained and outline the future directions of our work.
Resumo:
Studies dedicated to understanding the relationship between gaming and mental health, have traditionally focused on the effects of depression, anxiety, obsessive usage, aggression, obesity, and faltering ‘real life’ relationships. The complexity of game genre and personality aside, this review aims to define a space for a positive relationship between videogame play and wellbeing by applying current videogame research to the criteria that defines the wellbeing construct ‘flourishing’. Self- determination theory (SDT), and flow provide context, and areas of overlap are explored.
Resumo:
In this paper, we propose a novel relay ordering and scheduling strategy for the sequential slotted amplify-and-forward (SAF) protocol and evaluate its performance in terms of diversity-multiplexing trade-off (DMT). The relays between the source and destination are grouped into two relay clusters based on their respective locations. The proposed strategy achieves partial relay isolation and decreases the decoding complexity at the destination. We show that the DMT upper bound of sequential-SAF with the proposed strategy outperforms other amplify and forward protocols and is more practical compared to the relay isolation assumption made in the original paper [1]. Simulation result shows that the sequential-SAF protocol with the proposed strategy has better outage performance compared to the existing AF and non-cooperative protocols in high SNR regime.
Resumo:
In this paper, we propose a novel slotted hybrid cooperative protocol named the sequential slotted amplify-decodeand-forward (SADF) protocol and evaluate its performance in terms of diversity-multiplexing trade-off (DMT). The relays between the source and destination are divided into two different groups and each relay either amplifies or decodes the received signal. We first compute the optimal DMT of the proposed protocol with the assumption of perfect decoding at the DF relays. We then derive the DMT closed-form expression of the proposed sequential-SADF and obtain the proximity gain bound for achieving the optimal DMT. With the proximity gain bound, we then found the distance ratio to achieve the optimal DMT performance. Simulation result shows that the proposed protocol with high proximity gain outperforms other cooperative communication protocols in high SNR regime.
Resumo:
The rapid increase in the deployment of CCTV systems has led to a greater demand for algorithms that are able to process incoming video feeds. These algorithms are designed to extract information of interest for human operators. During the past several years, there has been a large effort to detect abnormal activities through computer vision techniques. Typically, the problem is formulated as a novelty detection task where the system is trained on normal data and is required to detect events which do not fit the learned `normal' model. Many researchers have tried various sets of features to train different learning models to detect abnormal behaviour in video footage. In this work we propose using a Semi-2D Hidden Markov Model (HMM) to model the normal activities of people. The outliers of the model with insufficient likelihood are identified as abnormal activities. Our Semi-2D HMM is designed to model both the temporal and spatial causalities of the crowd behaviour by assuming the current state of the Hidden Markov Model depends not only on the previous state in the temporal direction, but also on the previous states of the adjacent spatial locations. Two different HMMs are trained to model both the vertical and horizontal spatial causal information. Location features, flow features and optical flow textures are used as the features for the model. The proposed approach is evaluated using the publicly available UCSD datasets and we demonstrate improved performance compared to other state of the art methods.
Resumo:
Spatio-Temporal interest points are the most popular feature representation in the field of action recognition. A variety of methods have been proposed to detect and describe local patches in video with several techniques reporting state of the art performance for action recognition. However, the reported results are obtained under different experimental settings with different datasets, making it difficult to compare the various approaches. As a result of this, we seek to comprehensively evaluate state of the art spatio- temporal features under a common evaluation framework with popular benchmark datasets (KTH, Weizmann) and more challenging datasets such as Hollywood2. The purpose of this work is to provide guidance for researchers, when selecting features for different applications with different environmental conditions. In this work we evaluate four popular descriptors (HOG, HOF, HOG/HOF, HOG3D) using a popular bag of visual features representation, and Support Vector Machines (SVM)for classification. Moreover, we provide an in-depth analysis of local feature descriptors and optimize the codebook sizes for different datasets with different descriptors. In this paper, we demonstrate that motion based features offer better performance than those that rely solely on spatial information, while features that combine both types of data are more consistent across a variety of conditions, but typically require a larger codebook for optimal performance.
Resumo:
A5/1 is a shift register based stream cipher which uses a majority clocking rule to update its registers. It is designed to provide privacy for the GSM system. In this paper, we analyse the initialisation process of A5/1. We demonstrate a sliding property of the A5/1 cipher, where every valid internal state is also a legitimate loaded state and multiple key-IV pairs produce phase shifted keystream sequences. We describe a possible ciphertext only attack based on this property.
Resumo:
Recent research has proposed Neo-Piagetian theory as a useful way of describing the cognitive development of novice programmers. Neo-Piagetian theory may also be a useful way to classify materials used in learning and assessment. If Neo-Piagetian coding of learning resources is to be useful then it is important that practitioners can learn it and apply it reliably. We describe the design of an interactive web-based tutorial for Neo-Piagetian categorization of assessment tasks. We also report an evaluation of the tutorial's effectiveness, in which twenty computer science educators participated. The average classification accuracy of the participants on each of the three Neo-Piagetian stages were 85%, 71% and 78%. Participants also rated their agreement with the expert classifications, and indicated high agreement (91%, 83% and 91% across the three Neo-Piagetian stages). Self-rated confidence in applying Neo-Piagetian theory to classifying programming questions before and after the tutorial were 29% and 75% respectively. Our key contribution is the demonstration of the feasibility of the Neo-Piagetian approach to classifying assessment materials, by demonstrating that it is learnable and can be applied reliably by a group of educators. Our tutorial is freely available as a community resource.
Resumo:
In this paper, we describe a machine-translated parallel English corpus for the NTCIR Chinese, Japanese and Korean (CJK) Wikipedia collections. This document collection is named CJK2E Wikipedia XML corpus. The corpus could be used by the information retrieval research community and knowledge sharing in Wikipedia in many ways; for example, this corpus could be used for experimentations in cross-lingual information retrieval, cross-lingual link discovery, or omni-lingual information retrieval research. Furthermore, the translated CJK articles could be used to further expand the current coverage of the English Wikipedia.
Resumo:
We blend research from human-computer interface (HCI) design with computational based crypto- graphic provable security. We explore the notion of practice-oriented provable security (POPS), moving the focus to a higher level of abstraction (POPS+) for use in providing provable security for security ceremonies involving humans. In doing so we high- light some challenges and paradigm shifts required to achieve meaningful provable security for a protocol which includes a human. We move the focus of security ceremonies from being protocols in their context of use, to the protocols being cryptographic building blocks in a higher level protocol (the security cere- mony), which POPS can be applied to. In order to illustrate the need for our approach, we analyse both a protocol proven secure in theory, and a similar proto- col implemented by a �nancial institution, from both HCI and cryptographic perspectives.
Resumo:
The GameFlow model strives to be a general model of player enjoyment, applicable to all game genres and platforms. Derived from a general set of heuristics for creating enjoyable player experiences, the GameFlow model has been widely used in evaluating many types of games, as well as non-game applications. However, we recognize that more specific, low-level, and implementable criteria are potentially more useful for designing and evaluating video games. Consequently, the research reported in this paper aims to provide detailed heuristics for designing and evaluating one specific game genre, real-time strategy games. In order to develop these heuristics, we conducted a grounded theoretical analysis on a set of professional game reviews and structured the resulting heuristics using the GameFlow model. The resulting 165 heuristics for designing and evaluating real-time strategy games are presented and discussed in this paper.
Resumo:
Piezoelectric transducers convert electrical energy to mechanical energy and play a great role in ultrasound systems. Ultrasound power transducer performance is strongly related to the applied electrical excitation. To have a suitable excitation for maximum energy conversion, it is required to analyze the effects of input signal waveform, medium and input signal distortion on the characteristic of a high power ultrasound system (including ultrasound transducer). In this research, different input voltage signals are generated using a single-phase power inverter and a linear power amplifier to excite a high power ultrasound transducer in different medium (water and oil) in order to study the characteristic of the system. We have also considered and analyzed the effect of power converter output voltage distortions on the performance of the high power ultrasound transducer using a passive filter.
Resumo:
As e-commerce is becoming more and more popular, the number of customer reviews that a product receives grows rapidly. In order to enhance customer satisfaction and their shopping experiences, it has become important to analysis customers reviews to extract opinions on the products that they buy. Thus, Opinion Mining is getting more important than before especially in doing analysis and forecasting about customers’ behavior for businesses purpose. The right decision in producing new products or services based on data about customers’ characteristics means profit for organization/company. This paper proposes a new architecture for Opinion Mining, which uses a multidimensional model to integrate customers’ characteristics and their comments about products (or services). The key step to achieve this objective is to transfer comments (opinions) to a fact table that includes several dimensions, such as, customers, products, time and locations. This research presents a comprehensive way to calculate customers’ orientation for all possible products’ attributes.