524 resultados para Engineering Asset Management


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This document provides a review of international and national practices in investment decision support tools in road asset management. Efforts were concentrated on identifying analytic frameworks, evaluation methodologies and criteria adopted by current tools. Emphasis was also given to how current approaches support Triple Bottom Line decision-making. Benefit Cost Analysis and Multiple Criteria Analysis are principle methodologies in supporting decision-making in Road Asset Management. The complexity of the applications shows significant differences in international practices. There is continuing discussion amongst practitioners and researchers regarding to which one is more appropriate in supporting decision-making. It is suggested that the two approaches should be regarded as complementary instead of competitive means. Multiple Criteria Analysis may be particularly helpful in early stages of project development, say strategic planning. Benefit Cost Analysis is used most widely for project prioritisation and selecting the final project from amongst a set of alternatives. Benefit Cost Analysis approach is useful tool for investment decision-making from an economic perspective. An extension of the approach, which includes social and environmental externalities, is currently used in supporting Triple Bottom Line decision-making in the road sector. However, efforts should be given to several issues in the applications. First of all, there is a need to reach a degree of commonality on considering social and environmental externalities, which may be achieved by aggregating the best practices. At different decision-making level, the detail of consideration of the externalities should be different. It is intended to develop a generic framework to coordinate the range of existing practices. The standard framework will also be helpful in reducing double counting, which appears in some current practices. Cautions should also be given to the methods of determining the value of social and environmental externalities. A number of methods, such as market price, resource costs and Willingness to Pay, are found in the review. The use of unreasonable monetisation methods in some cases has discredited Benefit Cost Analysis in the eyes of decision makers and the public. Some social externalities, such as employment and regional economic impacts, are generally omitted in current practices. This is due to the lack of information and credible models. It may be appropriate to consider these externalities in qualitative forms in a Multiple Criteria Analysis. Consensus has been reached in considering noise and air pollution in international practices. However, Australia practices generally omitted these externalities. Equity is an important consideration in Road Asset Management. The considerations are either between regions, or social groups, such as income, age, gender, disable, etc. In current practice, there is not a well developed quantitative measure for equity issues. More research is needed to target this issue. Although Multiple Criteria Analysis has been used for decades, there is not a generally accepted framework in the choice of modelling methods and various externalities. The result is that different analysts are unlikely to reach consistent conclusions about a policy measure. In current practices, some favour using methods which are able to prioritise alternatives, such as Goal Programming, Goal Achievement Matrix, Analytic Hierarchy Process. The others just present various impacts to decision-makers to characterise the projects. Weighting and scoring system are critical in most Multiple Criteria Analysis. However, the processes of assessing weights and scores were criticised as highly arbitrary and subjective. It is essential that the process should be as transparent as possible. Obtaining weights and scores by consulting local communities is a common practice, but is likely to result in bias towards local interests. Interactive approach has the advantage in helping decision-makers elaborating their preferences. However, computation burden may result in lose of interests of decision-makers during the solution process of a large-scale problem, say a large state road network. Current practices tend to use cardinal or ordinal scales in measure in non-monetised externalities. Distorted valuations can occur where variables measured in physical units, are converted to scales. For example, decibels of noise converts to a scale of -4 to +4 with a linear transformation, the difference between 3 and 4 represents a far greater increase in discomfort to people than the increase from 0 to 1. It is suggested to assign different weights to individual score. Due to overlapped goals, the problem of double counting also appears in some of Multiple Criteria Analysis. The situation can be improved by carefully selecting and defining investment goals and criteria. Other issues, such as the treatment of time effect, incorporating risk and uncertainty, have been given scant attention in current practices. This report suggested establishing a common analytic framework to deal with these issues.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this project is to develop a systematic investment decision-making framework for infrastructure asset management by incorporation economic justification, social and environmental consideration in the decision-making process. This project assesses the factors that are expected to provide significant impacts on the variability of expenditures. A procedure for assessing risk and reliability for project investment appraisals will be developed. The project investigates public perception, social and environmental impacts on road infrastructure investment. This research will contribute to the debate about how important social and environmental issues should be incorporated into the investment decision-making process for infrastructure asset management.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Both in developed and developing economies, major public funding is invested in civil infrastructure assets. Efficiency and comfort level of expected and demanded living standards are largely dependant on the management strategies of these assets. Buildings are one of the major & vital assets, which need to be maintained primarily to ensure its functionality by effective & efficient delivery of services and to optimize economic benefits. Not withstanding, public building infrastructure is not considered in Infrastructure report card published by Australian Infrastructure Report Card Alliance Partners (2001). The reason appears to be not having enough data to rate public building infrastructure. American Infrastructure Report Card (2001) gave “School Buildings” ‘d-’ rating, which is below ‘poor’. For effective asset management of building infrastructure, a need emerged to optimise the budget for managing assets, to cope up with increased user expectations, to response effectively to possible asset failures, to deal with ageing of assets and aging populations and to treat other scenarios including technology advancement and non-asset solutions. John (Asset Management, 2001) suggests that in the area of asset management worldwide, UK, Australia and New Zealand are leading.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Australias civil infrastructure assets of roads, bridges, railways, buildings and other structures are worth billions of dollars. To effectively manage road infrastructures, road agencies firstly need to optimise the expenditure for data collection whilst not jeopardising the reliability in using the optimised data to predict maintenance and rehabilitation costs. Secondly, road agencies need to accurately predict the deterioration rates of infrastructures to reflect local conditions so that the budget estimates can be accurately calculated. Finally, the prediction of budgets for maintenance and rehabilitation must be reasonably reliable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An asset registry arguably forms the core system that needs to be in place before other systems can operate or interoperate. Most systems have rudimentary asset registry functionality that store assets, relationships, or characteristics, and this leads to different asset management systems storing similar sets of data in multiple locations in an organisation. As organisations have been slowly moving their information architecture toward a service-oriented architecture, they have also been consolidating their multiple data stores, to form a “single point of truth”. As part of a strategy to integrate several asset management systems in an Australian railway organisation, a case study for developing a consolidated asset registry was conducted. A decision was made to use the MIMOSA OSA-EAI CRIS data model as well as the OSA-EAI Reference Data in building the platform due to the standard’s relative maturity and completeness. A pilot study of electrical traction equipment was selected, and the data sources feeding into the asset registry were primarily diagrammatic based. This paper presents the pitfalls encountered, approaches taken, and lessons learned during the development of the asset registry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Technological and societal change, along with organisational and market change (driven by contracting-out and privatisation), are “creating a new generation of infrastructures” [1]. While inter-organisational contractual arrangements can improve maintenance efficiency through consistent and repeatable patterns of action - unanticipated difficulties in implementation can reduce the performance of these arrangements. When faced with unsatisfactory performance of contracting-out arrangements, government organisations may choose to adapt and change these arrangements over time, with the aim of improving performance. This paper enhances our understanding of ‘next generation infrastructures’ by examining adaptation of the organisational arrangements for the maintenance of these assets, in a case study spanning 20 years.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optimal operation and maintenance of engineering systems heavily rely on the accurate prediction of their failures. Most engineering systems, especially mechanical systems, are susceptible to failure interactions. These failure interactions can be estimated for repairable engineering systems when determining optimal maintenance strategies for these systems. An extended Split System Approach is developed in this paper. The technique is based on the Split System Approach and a model for interactive failures. The approach was applied to simulated data. The results indicate that failure interactions will increase the hazard of newly repaired components. The intervals of preventive maintenance actions of a system with failure interactions, will become shorter compared with scenarios where failure interactions do not exist.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Building for a sustainable environment requires sustainable infrastructure assets. Infrastructure capacity management is the process of ensuring optimal provision of such infrastructure assets. Effectiveness in this process will enable the infrastructure asset owners and its stakeholders to receive full value on their investment. Business research has shown that an organisation can only achieve business value when it has the right capabilities. This paradigm can also be applied to infrastructure capacity management. With limited access to resources, the challenge for infrastructure organisations is to identify and develop core capabilities to enable infrastructure capacity management. This chapter explores the concept of capability and identifies the core capability needed in infrastructure capacity management. Through a case study of the Port of Brisbane, this chapter shows that infrastructure organisations must develop their intelligence gathering capability to effectively manage the capacity of their infrastructure assets.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Australia, road crash trauma costs the nation A$15 billion annually whilst the US estimates an economic impact of around US$ 230 billion on its network. Worldwide economic cost of road crashes is estimated to be around US$ 518 billion each year. Road accidents occur due to a number of factors including driver behaviour, geometric alignment, vehicle characteristics, environmental impacts, and the type and condition of the road surfacing. Skid resistance is considered one of the most important road surface characteristics because it has a direct effect on traffic safety. In 2005, Austroads (the Association of Australian and New Zealand Road Transport and Traffic Authorities) published a guideline for the management of skid resistance and Queensland Department of Main Roads (QDMR) developed a skid resistance management plan (SRMP). The current QDMR strategy is based on rationale analytical methodology supported by field inspection with related asset management decision tools. The Austroads’s guideline and QDMR's skid resistance management plan have prompted QDMR to review its skid resistance management practice. As a result, a joint research project involving QDMR, Queensland University of Technology (QUT) and the Corporative Research Centre for Integrated Engineering Asset Management (CRC CIEAM) was formed. The research project aims at investigating whether there is significant relationship between road crashes and skid resistance on Queensland’s road networks. If there is, the current skid resistance management practice of QDMR will be reviewed and appropriate skid resistance investigatory levels will be recommended. This paper presents analysis results in assessing the relationship between wet crashes and skid resistance on Queensland roads. Attributes considered in the analysis include surface types, annual average daily traffic (AADT), speed and seal age.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Infrastructure organisations such as airport, seaport, rail and road are operating in an increasingly challenging business environment as a result of globalisation, privatisation and deregulation. These organisations must ensure that their main resource i.e. their infrastructure assets are well managed in order to support their business operations. Brisbane Airport is used as a case study to understand the challenges faced in the management of infrastructure assets as well as the approaches used to overcome them. The findings can be useful in helping asset managers to identify the resources they should seek to manipulate in order to make improvement to their activities and contribute to the overall performance of their organisation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prognostics and asset life prediction is one of research potentials in engineering asset health management. We previously developed the Explicit Hazard Model (EHM) to effectively and explicitly predict asset life using three types of information: population characteristics; condition indicators; and operating environment indicators. We have formerly studied the application of both the semi-parametric EHM and non-parametric EHM to the survival probability estimation in the reliability field. The survival time in these models is dependent not only upon the age of the asset monitored, but also upon the condition and operating environment information obtained. This paper is a further study of the semi-parametric and non-parametric EHMs to the hazard and residual life prediction of a set of resistance elements. The resistance elements were used as corrosion sensors for measuring the atmospheric corrosion rate in a laboratory experiment. In this paper, the estimated hazard of the resistance element using the semi-parametric EHM and the non-parametric EHM is compared to the traditional Weibull model and the Aalen Linear Regression Model (ALRM), respectively. Due to assuming a Weibull distribution in the baseline hazard of the semi-parametric EHM, the estimated hazard using this model is compared to the traditional Weibull model. The estimated hazard using the non-parametric EHM is compared to ALRM which is a well-known non-parametric covariate-based hazard model. At last, the predicted residual life of the resistance element using both EHMs is compared to the actual life data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Preservation and enhancement of transportation infrastructure is critical to continuous economic development in Australia. Of particular importance are the road assets infrastructure, due to their high costs of setting up and their social and economic impact on the national economy. Continuous availability of road assets, however, is contingent upon their effective design, condition monitoring, maintenance, and renovation and upgrading. However, in order to achieve this data exchange, integration, and interoperability is required across municipal boundaries. On the other hand, there are no agreed reference frameworks that consistently describe road infrastructure assets. As a consequence, specifications and technical solutions being chosen to manage road assets do not provide adequate detail and quality of information to support asset lifecycle management processes and decisions taken are based on perception not reality. This paper presents a road asset information model, which works as reference framework to, link other kinds of information with asset information; integrate different data suppliers; and provide a foundation for service driven integrated information framework for community infrastructure and asset management.