101 resultados para Duff (Ship)
Resumo:
In the last two decades, there are developments that lead to greater understanding on how and why lightweight concretes (LWC) may achieve similar or higher performance than their normal weight counterparts. The present paper reviews some of these aspects beginning with basic properties such as unit weight, compressive strength and specific strength (strength/ unit weight). Stability and workability of LWC is discussed from rheological perspective. The volumetric stability of LWC in terms of shrinkage and creep are presented with some recent published data. Transport properties of the LWC in terms of sorptivity, water permeability and resistance to chloride-ion penetration are reviewed in comparison with normal weight concrete. Fire resistance of LWC and some current measures used to improve the resistance are discussed. With continual research and development, the performance of LWC is being enhanced to provide new opportunities for practical applications.
Resumo:
This paper presents an experimental study to evaluate the effect of coarse and fine LWA in concrete on its water absorption and permeability, and resistance to chloride-ion penetration. In additions, LWC with lower unit weight of about 1300 kg/m3 but high resistance to water and chloride-ion penetration was developed and evaluated. The results indicate that the incorporation of coarse LWA in concrete increases water sorptivity and permeability slightly compared to NWC of similar w/c. The resistance of the sand-LWC to chloride-ion penetration depends on porosity of the coarse LWA. Fine LWA has more influence on the transport proper-ties of concrete than coarse LWA. Use of lightweight crushed sand <1.18 mm reduced the resistance of the LWC to water and chloride-ion penetration to some extent. With low w/cm and silica fume, low unit weight LWC (~1300 kg/m3) was produced with higher resistance to water and chloride ion penetration compared with concretes of higher unit weights.
Resumo:
In most developing countries, the overall quality of the livelihood of labourers, work place environment and implementation of labour rights do not progress at the same rate as their industrial development. To address this situation, the ILO has initiated the concept of 'decent work' to assist regulators articulate labour-related social policy goals. Against this backdrop, this article assesses the Bangladesh Labour Law 2006 by reference to the four social principles developed by the ILO for ensuring 'decent work'. It explains the impact of the absence of these principles in this Law on the labour administration in the ready-made garment and ship-breaking industries. It finds that an appropriate legislative framework needs to be based on the principles of 'decent work' to establish a solid platform for a sound labour regulation in Bangladesh.
Resumo:
Historic house museums form a significant component of the built heritage and social history of a country. They vary from the elaborate mansions of the wealthy to modest dwellings of the working class. Regardless of the original owner's status in society these house museums are vital to an understanding of architecture, culture and society from a bygone era. The Newstead House, the oldest surviving residence, in Brisbane, is the first house to be designated a 'Historic House Museum' in Queensland. It is a representative example of a house that demonstrates the British colonial heritage of 19th century Australia. Originally a modest cottage, on 34 acres of land, the Newstead house was built by a Scottish migrant. The ownership of the house and land changed many times, during the period from 1847 to 1939. During this period a series of prominent residents of Brisbane either owned or rented this residence. They included, an officer of the Royal Navy, politicians, magistrates, merchant ship owners, and a Consul General of the United States of America. As a result, the house went through a series of renovations and extensions to accommodate the needs of its owners and their position in society. This paper aims to investigate the significance of historic museum houses in educating the community on aspects of social history, culture and architecture of 19th century Australia. It will focus on the heritage listed Newstead House as a case study to demonstrate the significance of the house as an artefact and an educational tool.
Resumo:
This paper proposes a practical prediction procedure for vertical displacement of a Rotarywing Unmanned Aerial Vehicle (RUAV) landing deck in the presence of stochastic sea state disturbances. A proper time series model tending to capture characteristics of the dynamic relationship between an observer and a landing deck is constructed, with model orders determined by a novel principle based on Bayes Information Criterion (BIC) and coefficients identified using the Forgetting Factor Recursive Least Square (FFRLS) method. In addition, a fast-converging online multi-step predictor is developed, which can be implemented more rapidly than the Auto-Regressive (AR) predictor as it requires less memory allocations when updating coefficients. Simulation results demonstrate that the proposed prediction approach exhibits satisfactory prediction performance, making it suitable for integration into ship-helicopter approach and landing guidance systems in consideration of computational capacity of the flight computer.
Resumo:
This paper presents a disturbance attenuation controller for horizontal position stabilization for hover and automatic landings of a Rotary-wing Unmanned Aerial Vehicle (RUAV) operating in rough seas. Based on a helicopter model representing aerodynamics during the landing phase, a nonlinear state feedback H-infinity controller is designed to achieve rapid horizontal position tracking in a gusty environment. The resultant control variables are further treated in consideration of practical constraints (flapping dynamics, servo dynamics and time lag effect) for implementation purpose. The high-fidelity closed-loop simulation using parameters of the Vario helicopter verifies performance of the proposed position controller. It not only increases the disturbance attenuation capability of the RUAV, but also enables rapid position response when gusts occur. Comparative studies show that the H-infinity controller exhibits great performance improvement and can be applied to ship/RUAV landing systems.
Resumo:
This study presents a disturbance attenuation controller for horizontal position stabilisation for hover and automatic landings of a rotary-wing unmanned aerial vehicle (RUAV) operating close to the landing deck in rough seas. Based on a helicopter model representing aerodynamics during the landing phase, a non-linear state feedback H∞ controller is designed to achieve rapid horizontal position tracking in a gusty environment. Practical constraints including flapping dynamics, servo dynamics and time lag effect are considered. A high-fidelity closed-loop simulation using parameters of the Vario XLC gas-turbine helicopter verifies performance of the proposed horizontal position controller. The proposed controller not only increases the disturbance attenuation capability of the RUAV, but also enables rapid position response when gusts occur. Comparative studies show that the H∞ controller exhibits performance improvement and can be applied to ship/RUAV landing systems.
Resumo:
This paper presents a novel and practical procedure for estimating the mean deck height to assist in automatic landing operations of a Rotorcraft Unmanned Aerial Vehicle (RUAV) in harsh sea environments. A modified Prony Analysis (PA) procedure is outlined to deal with real-time observations of deck displacement, which involves developing an appropriate dynamic model to approach real deck motion with parameters identified through implementing the Forgetting Factor Recursive Least Square (FFRLS) method. The model order is specified using a proper order-selection criterion based on minimizing the summation of accumulated estimation errors. In addition, a feasible threshold criterion is proposed to separate the dominant components of deck displacement, which results in an accurate instantaneous estimation of the mean deck position. Simulation results demonstrate that the proposed recursive procedure exhibits satisfactory estimation performance when applied to real-time deck displacement measurements, making it well suited for integration into ship-RUAV approach and landing guidance systems.
Resumo:
According to a study conducted by the International Maritime organisation (IMO) shipping sector is responsible for 3.3% of the global Greenhouse Gas (GHG) emissions. The 1997 Kyoto Protocol calls upon states to pursue limitation or reduction of emissions of GHG from marine bunker fuels working through the IMO. In 2011, 14 years after the adoption of the Kyoto Protocol, the Marine Environment Protection Committee (MEPC) of the IMO has adopted mandatory energy efficiency measures for international shipping which can be treated as the first ever mandatory global GHG reduction instrument for an international industry. The MEPC approved an amendment of Annex VI of the 1973 International Convention for the Prevention of Pollution from Ships (MARPOL 73/78) to introduce a mandatory Energy Efficiency Design Index (EEDI) for new ships and the Ship Energy Efficiency Management Plan (SEEMP) for all ships. Considering the growth projections of human population and world trade the technical and operational measures may not be able to reduce the amount of GHG emissions from international shipping in a satisfactory level. Therefore, the IMO is considering to introduce market-based mechanisms that may serve two purposes including providing a fiscal incentive for the maritime industry to invest in more energy efficient manner and off-setting of growing ship emissions. Some leading developing countries already voiced their serious reservations on the newly adopted IMO regulations stating that by imposing the same obligation on all countries, irrespective of their economic status, this amendment has rejected the Principle of Common but Differentiated Responsibility (the CBDR Principle), which has always been the cornerstone of international climate change law discourses. They also claimed that negotiation for a market based mechanism should not be continued without a clear commitment from the developed counters for promotion of technical co-operation and transfer of technology relating to the improvement of energy efficiency of ships. Against this backdrop, this article explores the challenges for the developing counters in the implementation of already adopted technical and operational measures.
Resumo:
International shipping is responsible for about 2.7% of the global emissions of CO2. In the absence of proper action, emissions from the maritime sector may grow by 150% to 250% by 2050, in comparison with the level of emissions in 2007. Against this backdrop, the International Maritime Organisation has introduced a mandatory Energy Efficiency Design Index (EEDI) for new ships and the Ship Energy Efficiency Management Plan (SEEMP) for all ships. Some Asian countries have voiced serious reservations about the newly adopted IMO regulations. They have suggested that imposing the same obligations on all countries, irrespective of their economic status, is a serious departure from the Principle of Common but Differentiated Responsibility, which has always been the cornerstone of international climate change law discourse. Against this backdrop, this article presents a brief overview of the technical and operational measures from the perspective of Asian countries.
Resumo:
In this paper, a demand-responsive decision support system is proposed by integrating the operations of coal shipment, coal stockpiles and coal railing within a whole system. A generic and flexible scheduling optimisation methodology is developed to identify, represent, model, solve and analyse the coal transport problem in a standard and convenient way. As a result, the integrated train-stockpile-ship timetable is created and optimised for improving overall efficiency of coal transport system. A comprehensive sensitivity analysis based on extensive computational experiments is conducted to validate the proposed methodology. The mathematical proposition and proof are concluded as technical and insightful advices for industry practice. The proposed methodology provides better decision making on how to assign rail rolling-stocks and upgrade infrastructure in order to significantly improve capacity utilisation with the best resource-effectiveness ratio. The proposed decision support system with train-stockpile-ship scheduling optimisation techniques is promising to be applied in railway or mining industry, especially as a useful quantitative decision making tool on how to use more current rolling-stocks or whether to buy additional rolling-stocks for mining transportation.
Resumo:
In this chapter, we present a case study of control system design for rudderbased stabilisers of ships using RHC. The rudder’s main function is to correct the heading of a ship; however, depending on the type of ship, the rudder may also be used to produce, or correct, roll motion. Rudder roll stabilisation consists of using rudder-induced roll motion to reduce the roll motion induced by waves. When this technique is employed, an automatic control system is necessary to provide the rudder command based on measurements of ship motion. The RHC formulation provides a unified framework to address many of the difficulties associated with this control system design problem.
Resumo:
This paper presents two novel nonlinear models of u-shaped anti-roll tanks for ships, and their linearizations. In addition, a third simplified nonlinear model is presented. The models are derived using Lagrangian mechanics. This formulation not only simplifies the modeling process, but also allows one to obtain models that satisfy energy-related physical properties. The proposed nonlinear models and their linearizations are validated using model-scale experimental data. Unlike other models in the literature, the nonlinear models in this paper are valid for large roll amplitudes. Even at moderate roll angles, the nonlinear models have three orders of magnitude lower mean square error relative to experimental data than the linear models.
Resumo:
In this article, we have described the main components of a ship motion-control system and two particular motion-control problems that require wave filtering, namely, dynamic positioning and heading autopilot. Then, we discussed the models commonly used for vessel response and showed how these models are used for Kalman filter design. We also briefly discussed parameter and noise covariance estimation, which are used for filter tuning. To illustrate the performance, a case study based on numerical simulations for a ship autopilot was considered. The material discussed in this article conforms to modern commercially available ship motion-control systems. Most of the vessels operating in the offshore industry worldwide use Kalman filters for velocity estimation and wave filtering. Thus, the article provides an up-to-date tutorial and overview of Kalman-filter-based wave filtering.
Resumo:
In extreme weather conditions, thrusters on ships and rigs may be subject to severe thrust losses caused by ventilation and in-and-out-of-water events. When a thruster ventilates, air is sucked down from the surface and into the propeller. In more severe cases, parts of or even the whole propeller can be out of the water. These losses vary rapidly with time and cause increased wear and tear in addition to reduced thruster performance. In this paper, a thrust allocation strategy is proposed to reduce the effects of thrust losses and to reduce the possibility of multiple ventilation events. This thrust allocation strategy is named antispin thrust allocation, based on the analogous behavior of antispin wheel control of cars. The proposed thrust allocation strategy is important for improving the life span of the propulsion system and the accuracy of positioning for vessels conducting station keeping in terms of dynamic positioning or thruster-assisted position mooring. Application of this strategy can result in an increase of operational time and, thus, increased profitability. The performance of the proposed allocation strategy is demonstrated with experiments on a model ship.