105 resultados para Difference Equations with Maxima
Resumo:
This article has been edited from a transcript of the keynote address to the combined ALEA/MTE National Conference, Hobart, Tasmania, August 2001. In this talk Allan reflects on some of the difficulties facing makers of literacy policy in 'New Times'. His reflections are informed by some important research that is having an impact· on literacy teaching in Australia and he raises various issues, ranging from what he sees as a 'dumbing down' of curriculum, to addressing the needs of'at risk' students, to issues of lifelong education in a rapidly changing world.
Resumo:
An existing model for solvent penetration and drug release from a spherically-shaped polymeric drug delivery device is revisited. The model has two moving boundaries, one that describes the interface between the glassy and rubbery states of polymer, and another that defines the interface between the polymer ball and the pool of solvent. The model is extended so that the nonlinear diffusion coefficient of drug explicitly depends on the concentration of solvent, and the resulting equations are solved numerically using a front-fixing transformation together with a finite difference spatial discretisation and the method of lines. We present evidence that our scheme is much more accurate than a previous scheme. Asymptotic results in the small-time limit are presented, which show how the use of a kinetic law as a boundary condition on the innermost moving boundary dictates qualitative behaviour, the scalings being very different to the similar moving boundary problem that arises from modelling the melting of an ice ball. The implication is that the model considered here exhibits what is referred to as ``non-Fickian'' or Case II diffusion which, together with the initially constant rate of drug release, has certain appeal from a pharmaceutical perspective.
Resumo:
The effect of thermal radiation on a steady two-dimensional natural convection laminar flow of viscous incompressible optically thick fluid along a vertical flat plate with streamwise sinusoidal surface temperature has been investigated in this study. Using the appropriate variables; the basic governing equations are transformed to convenient form and then solved numerically employing two efficient methods, namely, Implicit finite difference method (IFD) together with Keller box scheme and Straight forward finite difference (SFFD) method. Effects of the variation of the physical parameters, for example, conduction-radiation parameter (Planck number), surface temperature parameter, and the amplitude of the surface temperature, are shown on the skin friction and heat transfer rate quantitatively are shown numerically. Velocity and temperature profiles as well as streamlines and isotherms are also presented and discussed for the variation of conduction-radiation parameter. It is found that both skin-friction and rate of heat transfer are enhanced considerably by increasing the values of conduction radiation parameter, Rd.
Resumo:
In the present study we investigate the effect of viscous dissipation on natural convection from a vertical plate placed in a thermally stratified environment. The reduced equations are integrated by employing the implicit finite difference scheme of Keller box method and obtained the effect of heat due to viscous dissipation on the local skin friction and local Nusselt number at various stratification levels, for fluids having Prandtl numbers of 10, 50, and 100. Solutions are also obtained using the perturbation technique for small values of viscous dissipation parameters $\xi$ and compared to the finite difference solutions for 0 · $\xi$ · 1. Effect of viscous dissipation and temperature stratification are also shown on the velocity and temperature distributions in the boundary layer region.
Resumo:
We present here a numerical study of laminar doubly diffusive free convection flows adjacent to a vertical surface in a stable thermally stratified medium. The governing equations of mass, momentum, energy and species are non-dimensionalized. These equations have been solved by using an implicit finite difference method and local non-similarity method. The results show many interesting aspects of complex interaction of the two buoyant mechanisms that have been shown in both the tabular as well as graphical form.
Resumo:
Recently, many new applications in engineering and science are governed by a series of fractional partial differential equations (FPDEs). Unlike the normal partial differential equations (PDEs), the differential order in a FPDE is with a fractional order, which will lead to new challenges for numerical simulation, because most existing numerical simulation techniques are developed for the PDE with an integer differential order. The current dominant numerical method for FPDEs is Finite Difference Method (FDM), which is usually difficult to handle a complex problem domain, and also hard to use irregular nodal distribution. This paper aims to develop an implicit meshless approach based on the moving least squares (MLS) approximation for numerical simulation of fractional advection-diffusion equations (FADE), which is a typical FPDE. The discrete system of equations is obtained by using the MLS meshless shape functions and the meshless strong-forms. The stability and convergence related to the time discretization of this approach are then discussed and theoretically proven. Several numerical examples with different problem domains and different nodal distributions are used to validate and investigate accuracy and efficiency of the newly developed meshless formulation. It is concluded that the present meshless formulation is very effective for the modeling and simulation of the FADE.
Resumo:
This study investigated whether conceptual development is greater if students learning senior chemistry hear teacher explanations and other traditional teaching approaches first then see computer based visualizations or vice versa. Five Canadian chemistry classes, taught by three different teachers, studied the topics of Le Chatelier’s Principle and dynamic chemical equilibria using scientific visualizations with the explanation and visualizations in different orders. Conceptual development was measured using a 12 item test based on the Chemistry Concepts Inventory. Data was obtained about the students’ abilities, learning styles (auditory, visual or kinesthetic) and sex, and the relationships between these factors and conceptual development due to the teaching sequences were investigated. It was found that teaching sequence is not important in terms of students’ conceptual learning gains, across the whole cohort or for any of the three subgroups.
Resumo:
Natural convection flow from an isothermal vertical plate with uniform heat source embedded in a stratified medium has been discussed in this paper. The resulting momentum and energy equations of boundary layer approximation are made non-similar by introducing the usual non-similarity transformations. Numerical solutions of these equations are obtained by an implicit finite difference method for a wide range of the stratification parameter, X. The solutions are also obtained for different values of pertinent parameters, namely, the Prandtl number, Pr and the heat generation or absorption parameter, λ and are expressed in terms of the local skin-friction and local heat transfer, which are shown in the graphical form. Effect of heat generation or absorption on the streamlines and isotherms are also shown graphically for different values of λ.
Resumo:
In this paper, the multi-term time-fractional wave diffusion equations are considered. The multiterm time fractional derivatives are defined in the Caputo sense, whose orders belong to the intervals [0,1], [1,2), [0,2), [0,3), [2,3) and [2,4), respectively. Some computationally effective numerical methods are proposed for simulating the multi-term time-fractional wave-diffusion equations. The numerical results demonstrate the effectiveness of theoretical analysis. These methods and techniques can also be extended to other kinds of the multi-term fractional time-space models with fractional Laplacian.
Resumo:
Problems involving the solution of advection-diffusion-reaction equations on domains and subdomains whose growth affects and is affected by these equations, commonly arise in developmental biology. Here, a mathematical framework for these situations, together with methods for obtaining spatio-temporal solutions and steady states of models built from this framework, is presented. The framework and methods are applied to a recently published model of epidermal skin substitutes. Despite the use of Eulerian schemes, excellent agreement is obtained between the numerical spatio-temporal, numerical steady state, and analytical solutions of the model.