301 resultados para Detecting
Resumo:
Computer forensics is the process of gathering and analysing evidence from computer systems to aid in the investigation of a crime. Typically, such investigations are undertaken by human forensic examiners using purpose-built software to discover evidence from a computer disk. This process is a manual one, and the time it takes for a forensic examiner to conduct such an investigation is proportional to the storage capacity of the computer's disk drives. The heterogeneity and complexity of various data formats stored on modern computer systems compounds the problems posed by the sheer volume of data. The decision to undertake a computer forensic examination of a computer system is a decision to commit significant quantities of a human examiner's time. Where there is no prior knowledge of the information contained on a computer system, this commitment of time and energy occurs with little idea of the potential benefit to the investigation. The key contribution of this research is the design and development of an automated process to describe a computer system and its activity for the purposes of a computer forensic investigation. The term proposed for this process is computer profiling. A model of a computer system and its activity has been developed over the course of this research. Using this model a computer system, which is the subj ect of investigation, can be automatically described in terms useful to a forensic investigator. The computer profiling process IS resilient to attempts to disguise malicious computer activity. This resilience is achieved by detecting inconsistencies in the information used to infer the apparent activity of the computer. The practicality of the computer profiling process has been demonstrated by a proof-of concept software implementation. The model and the prototype implementation utilising the model were tested with data from real computer systems. The resilience of the process to attempts to disguise malicious activity has also been demonstrated with practical experiments conducted with the same prototype software implementation.
Resumo:
Free-radical processes underpin the thermo-oxidative degradation of polyolefins. Thus, to extend the lifetime of these polymers, stabilizers are generally added during processing to scavenge the free radicals formed as the polymer degrades. Nitroxide radical precursors, such as hindered amine stabilizers (HAS),1,2 are common polypropylene additives as the nitroxide moiety is a potent scavenger of polymer alkyl radicals (R¥). Oxidation of HAS by radicals formed during polypropylene degradation yields nitroxide radicals (RRNO¥), which rapidly trap the polymer degradation species to produce alkoxyamines, thus retarding oxidative polymer degradation. This increase in polymer stability is demonstrated by a lengthening of the “induction period” of the polymer (the time prior to a sharp rise in the oxidation of the polymer). Instrumental techniques such as chemiluminescence or infrared spectroscopy are somewhat limited in detecting changes in the polymer during the initial stages of degradation. Therefore, other methods for observing polymer degradation have been sought as the useful life of a polymer does not extend far beyond its “induction period”
Resumo:
Many surveillance applications (object tracking, abandoned object detection) rely on detecting changes in a scene. Foreground segmentation is an effective way to extract the foreground from the scene, but these techniques cannot discriminate between objects that have temporarily stopped and those that are moving. We propose a series of modifications to an existing foreground segmentation system\cite{Butler2003} so that the foreground is further segmented into two or more layers. This yields an active layer of objects currently in motion and a passive layer of objects that have temporarily ceased motion which can itself be decomposed into multiple static layers. We also propose a variable threshold to cope with variable illumination, a feedback mechanism that allows an external process (i.e. surveillance system) to alter the motion detectors state, and a lighting compensation process and a shadow detector to reduce errors caused by lighting inconsistencies. The technique is demonstrated using outdoor surveillance footage, and is shown to be able to effectively deal with real world lighting conditions and overlapping objects.
Resumo:
Abandoned object detection (AOD) systems are required to run in high traffic situations, with high levels of occlusion. Systems rely on background segmentation techniques to locate abandoned objects, by detecting areas of motion that have stopped. This is often achieved by using a medium term motion detection routine to detect long term changes in the background. When AOD systems are integrated into person tracking system, this often results in two separate motion detectors being used to handle the different requirements. We propose a motion detection system that is capable of detecting medium term motion as well as regular motion. Multiple layers of medium term (static) motion can be detected and segmented. We demonstrate the performance of this motion detection system and as part of an abandoned object detection system.
Resumo:
Despite all attempts to prevent fraud, it continues to be a major threat to industry and government. Traditionally, organizations have focused on fraud prevention rather than detection, to combat fraud. In this paper we present a role mining inspired approach to represent user behaviour in Enterprise Resource Planning (ERP) systems, primarily aimed at detecting opportunities to commit fraud or potentially suspicious activities. We have adapted an approach which uses set theory to create transaction profiles based on analysis of user activity records. Based on these transaction profiles, we propose a set of (1) anomaly types to detect potentially suspicious user behaviour, and (2) scenarios to identify inadequate segregation of duties in an ERP environment. In addition, we present two algorithms to construct a directed acyclic graph to represent relationships between transaction profiles. Experiments were conducted using a real dataset obtained from a teaching environment and a demonstration dataset, both using SAP R/3, presently the predominant ERP system. The results of this empirical research demonstrate the effectiveness of the proposed approach.
Resumo:
ERP systems generally implement controls to prevent certain common kinds of fraud. In addition however, there is an imperative need for detection of more sophisticated patterns of fraudulent activity as evidenced by the legal requirement for company audits and the common incidence of fraud. This paper describes the design and implementation of a framework for detecting patterns of fraudulent activity in ERP systems. We include the description of six fraud scenarios and the process of specifying and detecting the occurrence of those scenarios in ERP user log data using the prototype software which we have developed. The test results for detecting these scenarios in log data have been verified and confirm the success of our approach which can be generalized to ERP systems in general.
Resumo:
Machine vision represents a particularly attractive solution for sensing and detecting potential collision-course targets due to the relatively low cost, size, weight, and power requirements of the sensors involved (as opposed to radar). This paper describes the development and evaluation of a vision-based collision detection algorithm suitable for fixed-wing aerial robotics. The system was evaluated using highly realistic vision data of the moments leading up to a collision. Based on the collected data, our detection approaches were able to detect targets at distances ranging from 400m to about 900m. These distances (with some assumptions about closing speeds and aircraft trajectories) translate to an advanced warning of between 8-10 seconds ahead of impact, which approaches the 12.5 second response time recommended for human pilots. We make use of the enormous potential of graphic processing units to achieve processing rates of 30Hz (for images of size 1024-by- 768). Currently, integration in the final platform is under way.
Resumo:
Machine vision represents a particularly attractive solution for sensing and detecting potential collision-course targets due to the relatively low cost, size, weight, and power requirements of vision sensors (as opposed to radar and TCAS). This paper describes the development and evaluation of a real-time vision-based collision detection system suitable for fixed-wing aerial robotics. Using two fixed-wing UAVs to recreate various collision-course scenarios, we were able to capture highly realistic vision (from an onboard camera perspective) of the moments leading up to a collision. This type of image data is extremely scarce and was invaluable in evaluating the detection performance of two candidate target detection approaches. Based on the collected data, our detection approaches were able to detect targets at distances ranging from 400m to about 900m. These distances (with some assumptions about closing speeds and aircraft trajectories) translate to an advanced warning of between 8-10 seconds ahead of impact, which approaches the 12.5 second response time recommended for human pilots. We overcame the challenge of achieving real-time computational speeds by exploiting the parallel processing architectures of graphics processing units found on commercially-off-the-shelf graphics devices. Our chosen GPU device suitable for integration onto UAV platforms can be expected to handle real-time processing of 1024 by 768 pixel image frames at a rate of approximately 30Hz. Flight trials using manned Cessna aircraft where all processing is performed onboard will be conducted in the near future, followed by further experiments with fully autonomous UAV platforms.
Resumo:
Approaches with Vertical Guidance (APV) can provide greater safety and cost savings to general aviation through accurate GPS horizontal and vertical navigation. However, GPS needs augmentation to achieve APV fault detection requirements. Aircraft Based Augmentation Systems (ABAS) fuse GPS with additional sensors at the aircraft. Typical ABAS designs assume high-quality inertial sensors with Kalman filters but these are too expensive for general aviation. Instead of using high-quality (and expensive) sensors, the purpose of this paper is to investigate augmenting GPS with a low-quality MEMS IMU and Aircraft Dynamic Model (ADM). The IMU and ADM are fused together using a multiple model fusion strategy in a bank of Extended Kalman Filters (EKF) with the Normalized Solution Separation (NSS) fault detection scheme. A tightly-coupled configuration with GPS is used and frequent GPS updates are applied to the IMU and ADM to compensate for their errors. Based upon a simulated APV approach, the performance of this architecture in detecting a GPS ramp fault is investigated showing a performance improvement over a GPS-only “snapshot” implementation of the NSS method. The effect of fusing the IMU with the ADM is evaluated by comparing a GPS-IMU-ADM EKF with a GPS-IMU EKF where a small improvement in protection levels is shown.
Resumo:
Campylobacter jejuni followed by Campylobacter coli contribute substantially to the economic and public health burden attributed to food-borne infections in Australia. Genotypic characterisation of isolates has provided new insights into the epidemiology and pathogenesis of C. jejuni and C. coli. However, currently available methods are not conducive to large scale epidemiological investigations that are necessary to elucidate the global epidemiology of these common food-borne pathogens. This research aims to develop high resolution C. jejuni and C. coli genotyping schemes that are convenient for high throughput applications. Real-time PCR and High Resolution Melt (HRM) analysis are fundamental to the genotyping schemes developed in this study and enable rapid, cost effective, interrogation of a range of different polymorphic sites within the Campylobacter genome. While the sources and routes of transmission of campylobacters are unclear, handling and consumption of poultry meat is frequently associated with human campylobacteriosis in Australia. Therefore, chicken derived C. jejuni and C. coli isolates were used to develop and verify the methods described in this study. The first aim of this study describes the application of MLST-SNP (Multi Locus Sequence Typing Single Nucleotide Polymorphisms) + binary typing to 87 chicken C. jejuni isolates using real-time PCR analysis. These typing schemes were developed previously by our research group using isolates from campylobacteriosis patients. This present study showed that SNP + binary typing alone or in combination are effective at detecting epidemiological linkage between chicken derived Campylobacter isolates and enable data comparisons with other MLST based investigations. SNP + binary types obtained from chicken isolates in this study were compared with a previously SNP + binary and MLST typed set of human isolates. Common genotypes between the two collections of isolates were identified and ST-524 represented a clone that could be worth monitoring in the chicken meat industry. In contrast, ST-48, mainly associated with bovine hosts, was abundant in the human isolates. This genotype was, however, absent in the chicken isolates, indicating the role of non-poultry sources in causing human Campylobacter infections. This demonstrates the potential application of SNP + binary typing for epidemiological investigations and source tracing. While MLST SNPs and binary genes comprise the more stable backbone of the Campylobacter genome and are indicative of long term epidemiological linkage of the isolates, the development of a High Resolution Melt (HRM) based curve analysis method to interrogate the hypervariable Campylobacter flagellin encoding gene (flaA) is described in Aim 2 of this study. The flaA gene product appears to be an important pathogenicity determinant of campylobacters and is therefore a popular target for genotyping, especially for short term epidemiological studies such as outbreak investigations. HRM curve analysis based flaA interrogation is a single-step closed-tube method that provides portable data that can be easily shared and accessed. Critical to the development of flaA HRM was the use of flaA specific primers that did not amplify the flaB gene. HRM curve analysis flaA interrogation was successful at discriminating the 47 sequence variants identified within the 87 C. jejuni and 15 C. coli isolates and correlated to the epidemiological background of the isolates. In the combinatorial format, the resolving power of flaA was additive to that of SNP + binary typing and CRISPR (Clustered regularly spaced short Palindromic repeats) HRM and fits the PHRANA (Progressive hierarchical resolving assays using nucleic acids) approach for genotyping. The use of statistical methods to analyse the HRM data enhanced sophistication of the method. Therefore, flaA HRM is a rapid and cost effective alternative to gel- or sequence-based flaA typing schemes. Aim 3 of this study describes the development of a novel bioinformatics driven method to interrogate Campylobacter MLST gene fragments using HRM, and is called ‘SNP Nucleated Minim MLST’ or ‘Minim typing’. The method involves HRM interrogation of MLST fragments that encompass highly informative “Nucleating SNPS” to ensure high resolution. Selection of fragments potentially suited to HRM analysis was conducted in silico using i) “Minimum SNPs” and ii) the new ’HRMtype’ software packages. Species specific sets of six “Nucleating SNPs” and six HRM fragments were identified for both C. jejuni and C. coli to ensure high typeability and resolution relevant to the MLST database. ‘Minim typing’ was tested empirically by typing 15 C. jejuni and five C. coli isolates. The association of clonal complexes (CC) to each isolate by ‘Minim typing’ and SNP + binary typing were used to compare the two MLST interrogation schemes. The CCs linked with each C. jejuni isolate were consistent for both methods. Thus, ‘Minim typing’ is an efficient and cost effective method to interrogate MLST genes. However, it is not expected to be independent, or meet the resolution of, sequence based MLST gene interrogation. ‘Minim typing’ in combination with flaA HRM is envisaged to comprise a highly resolving combinatorial typing scheme developed around the HRM platform and is amenable to automation and multiplexing. The genotyping techniques described in this thesis involve the combinatorial interrogation of differentially evolving genetic markers on the unified real-time PCR and HRM platform. They provide high resolution and are simple, cost effective and ideally suited to rapid and high throughput genotyping for these common food-borne pathogens.
Resumo:
In this thesis, the issue of incorporating uncertainty for environmental modelling informed by imagery is explored by considering uncertainty in deterministic modelling, measurement uncertainty and uncertainty in image composition. Incorporating uncertainty in deterministic modelling is extended for use with imagery using the Bayesian melding approach. In the application presented, slope steepness is shown to be the main contributor to total uncertainty in the Revised Universal Soil Loss Equation. A spatial sampling procedure is also proposed to assist in implementing Bayesian melding given the increased data size with models informed by imagery. Measurement error models are another approach to incorporating uncertainty when data is informed by imagery. These models for measurement uncertainty, considered in a Bayesian conditional independence framework, are applied to ecological data generated from imagery. The models are shown to be appropriate and useful in certain situations. Measurement uncertainty is also considered in the context of change detection when two images are not co-registered. An approach for detecting change in two successive images is proposed that is not affected by registration. The procedure uses the Kolmogorov-Smirnov test on homogeneous segments of an image to detect change, with the homogeneous segments determined using a Bayesian mixture model of pixel values. Using the mixture model to segment an image also allows for uncertainty in the composition of an image. This thesis concludes by comparing several different Bayesian image segmentation approaches that allow for uncertainty regarding the allocation of pixels to different ground components. Each segmentation approach is applied to a data set of chlorophyll values and shown to have different benefits and drawbacks depending on the aims of the analysis.
Resumo:
The previous investigations have shown that the modal strain energy correlation method, MSEC, could successfully identify the damage of truss bridge structures. However, it has to incorporate the sensitivity matrix to estimate damage and is not reliable in certain damage detection cases. This paper presents an improved MSEC method where the prediction of modal strain energy change vector is differently obtained by running the eigensolutions on-line in optimisation iterations. The particular trail damage treatment group maximising the fitness function close to unity is identified as the detected damage location. This improvement is then compared with the original MSEC method along with other typical correlation-based methods on the finite element model of a simple truss bridge. The contributions to damage detection accuracy of each considered mode is also weighed and discussed. The iterative searching process is operated by using genetic algorithm. The results demonstrate that the improved MSEC method suffices the demand in detecting the damage of truss bridge structures, even when noised measurement is considered.
Resumo:
Mobile ad-hoc networks (MANETs) are temporary wireless networks useful in emergency rescue services, battlefields operations, mobile conferencing and a variety of other useful applications. Due to dynamic nature and lack of centralized monitoring points, these networks are highly vulnerable to attacks. Intrusion detection systems (IDS) provide audit and monitoring capabilities that offer the local security to a node and help to perceive the specific trust level of other nodes. We take benefit of the clustering concept in MANETs for the effective communication between nodes, where each cluster involves a number of member nodes and is managed by a cluster-head. It can be taken as an advantage in these battery and memory constrained networks for the purpose of intrusion detection, by separating tasks for the head and member nodes, at the same time providing opportunity for launching collaborative detection approach. The clustering schemes are generally used for the routing purposes to enhance the route efficiency. However, the effect of change of a cluster tends to change the route; thus degrades the performance. This paper presents a low overhead clustering algorithm for the benefit of detecting intrusion rather than efficient routing. It also discusses the intrusion detection techniques with the help of this simplified clustering scheme.
Resumo:
Distributed Denial of Services DDoS, attacks has become one of the biggest threats for resources over Internet. Purpose of these attacks is to make servers deny from providing services to legitimate users. These attacks are also used for occupying media bandwidth. Currently intrusion detection systems can just detect the attacks but cannot prevent / track the location of intruders. Some schemes also prevent the attacks by simply discarding attack packets, which saves victim from attack, but still network bandwidth is wasted. In our opinion, DDoS requires a distributed solution to save wastage of resources. The paper, presents a system that helps us not only in detecting such attacks but also helps in tracing and blocking (to save the bandwidth as well) the multiple intruders using Intelligent Software Agents. The system gives dynamic response and can be integrated with the existing network defense systems without disturbing existing Internet model. We have implemented an agent based networking monitoring system in this regard.
Resumo:
A pragmatic method for assessing the accuracy and precision of a given processing pipeline required for converting computed tomography (CT) image data of bones into representative three dimensional (3D) models of bone shapes is proposed. The method is based on coprocessing a control object with known geometry which enables the assessment of the quality of resulting 3D models. At three stages of the conversion process, distance measurements were obtained and statistically evaluated. For this study, 31 CT datasets were processed. The final 3D model of the control object contained an average deviation from reference values of −1.07±0.52 mm standard deviation (SD) for edge distances and −0.647±0.43 mm SD for parallel side distances of the control object. Coprocessing a reference object enables the assessment of the accuracy and precision of a given processing pipeline for creating CTbased 3D bone models and is suitable for detecting most systematic or human errors when processing a CT-scan. Typical errors have about the same size as the scan resolution.