246 resultados para Deformable image registration
Resumo:
Modern computer graphics systems are able to construct renderings of such high quality that viewers are deceived into regarding the images as coming from a photographic source. Large amounts of computing resources are expended in this rendering process, using complex mathematical models of lighting and shading. However, psychophysical experiments have revealed that viewers only regard certain informative regions within a presented image. Furthermore, it has been shown that these visually important regions contain low-level visual feature differences that attract the attention of the viewer. This thesis will present a new approach to image synthesis that exploits these experimental findings by modulating the spatial quality of image regions by their visual importance. Efficiency gains are therefore reaped, without sacrificing much of the perceived quality of the image. Two tasks must be undertaken to achieve this goal. Firstly, the design of an appropriate region-based model of visual importance, and secondly, the modification of progressive rendering techniques to effect an importance-based rendering approach. A rule-based fuzzy logic model is presented that computes, using spatial feature differences, the relative visual importance of regions in an image. This model improves upon previous work by incorporating threshold effects induced by global feature difference distributions and by using texture concentration measures. A modified approach to progressive ray-tracing is also presented. This new approach uses the visual importance model to guide the progressive refinement of an image. In addition, this concept of visual importance has been incorporated into supersampling, texture mapping and computer animation techniques. Experimental results are presented, illustrating the efficiency gains reaped from using this method of progressive rendering. This visual importance-based rendering approach is expected to have applications in the entertainment industry, where image fidelity may be sacrificed for efficiency purposes, as long as the overall visual impression of the scene is maintained. Different aspects of the approach should find many other applications in image compression, image retrieval, progressive data transmission and active robotic vision.
Resumo:
Virtual 3D models of long bones are increasingly being used for implant design and research applications. The current gold standard for the acquisition of such data is Computed Tomography (CT) scanning. Due to radiation exposure, CT is generally limited to the imaging of clinical cases and cadaver specimens. Magnetic Resonance Imaging (MRI) does not involve ionising radiation and therefore can be used to image selected healthy human volunteers for research purposes. The feasibility of MRI as alternative to CT for the acquisition of morphological bone data of the lower extremity has been demonstrated in recent studies [1, 2]. Some of the current limitations of MRI are long scanning times and difficulties with image segmentation in certain anatomical regions due to poor contrast between bone and surrounding muscle tissues. Higher field strength scanners promise to offer faster imaging times or better image quality. In this study image quality at 1.5T is quantitatively compared to images acquired at 3T. --------- The femora of five human volunteers were scanned using 1.5T and 3T MRI scanners from the same manufacturer (Siemens) with similar imaging protocols. A 3D flash sequence was used with TE = 4.66 ms, flip angle = 15° and voxel size = 0.5 × 0.5 × 1 mm. PA-Matrix and body matrix coils were used to cover the lower limb and pelvis respectively. Signal to noise ratio (SNR) [3] and contrast to noise ratio (CNR) [3] of the axial images from the proximal, shaft and distal regions were used to assess the quality of images from the 1.5T and 3T scanners. The SNR was calculated for the muscle and bone-marrow in the axial images. The CNR was calculated for the muscle to cortex and cortex to bone marrow interfaces, respectively. --------- Preliminary results (one volunteer) show that the SNR of muscle for the shaft and distal regions was higher in 3T images (11.65 and 17.60) than 1.5T images (8.12 and 8.11). For the proximal region the SNR of muscles was higher in 1.5T images (7.52) than 3T images (6.78). The SNR of bone marrow was slightly higher in 1.5T images for both proximal and shaft regions, while it was lower in the distal region compared to 3T images. The CNR between muscle and bone of all three regions was higher in 3T images (4.14, 6.55 and 12.99) than in 1.5T images (2.49, 3.25 and 9.89). The CNR between bone-marrow and bone was slightly higher in 1.5T images (4.87, 12.89 and 10.07) compared to 3T images (3.74, 10.83 and 10.15). These results show that the 3T images generated higher contrast between bone and the muscle tissue than the 1.5T images. It is expected that this improvement of image contrast will significantly reduce the time required for the mainly manual segmentation of the MR images. Future work will focus on optimizing the 3T imaging protocol for reducing chemical shift and susceptibility artifacts.
Resumo:
This paper presents an overview of our demonstration of a low-bandwidth, wireless camera network where image compression is undertaken at each node. We briefly introduce the Fleck hardware platform we have developed as well as describe the image compression algorithm which runs on individual nodes. The demo will show real-time image data coming back to base as individual camera nodes are added to the network. Copyright 2007 ACM.
Resumo:
This paper is concerned with choosing image features for image based visual servo control and how this choice influences the closed-loop dynamics of the system. In prior work, image features tend to be chosen on the basis of image processing simplicity and noise sensitivity. In this paper we show that the choice of feature directly influences the closed-loop dynamics in task-space. We focus on the depth axis control of a visual servo system and compare analytically various approaches that have been reported recently in the literature. The theoretical predictions are verified by experiment.
Resumo:
This paper considers the question of designing a fully image based visual servo control for a dynamic system. The work is motivated by the ongoing development of image based visual servo control of small aerial robotic vehicles. The observed targets considered are coloured blobs on a flat surface to which the normal direction is known. The theoretical framework is directly applicable to the case of markings on a horizontal floor or landing field. The image features used are a first order spherical moment for position and an image flow measurement for velocity. A fully non-linear adaptive control design is provided that ensures global stability of the closed-loop system. © 2005 IEEE.
Resumo:
In this paper we describe the recent development of a low-bandwidth wireless camera sensor network. We propose a simple, yet effective, network architecture which allows multiple cameras to be connected to the network and synchronize their communication schedules. Image compression of greater than 90% is performed at each node running on a local DSP coprocessor, resulting in nodes using 1/8th the energy compared to streaming uncompressed images. We briefly introduce the Fleck wireless node and the DSP/camera sensor, and then outline the network architecture and compression algorithm. The system is able to stream color QVGA images over the network to a base station at up to 2 frames per second. © 2007 IEEE.
Resumo:
Robust texture recognition in underwater image sequences for marine pest population control such as Crown-Of-Thorns Starfish (COTS) is a relatively unexplored area of research. Typically, humans count COTS by laboriously processing individual images taken during surveys. Being able to autonomously collect and process images of reef habitat and segment out the various marine biota holds the promise of allowing researchers to gain a greater understanding of the marine ecosystem and evaluate the impact of different environmental variables. This research applies and extends the use of Local Binary Patterns (LBP) as a method for texture-based identification of COTS from survey images. The performance and accuracy of the algorithms are evaluated on a image data set taken on the Great Barrier Reef.
Resumo:
In this thesis, the issue of incorporating uncertainty for environmental modelling informed by imagery is explored by considering uncertainty in deterministic modelling, measurement uncertainty and uncertainty in image composition. Incorporating uncertainty in deterministic modelling is extended for use with imagery using the Bayesian melding approach. In the application presented, slope steepness is shown to be the main contributor to total uncertainty in the Revised Universal Soil Loss Equation. A spatial sampling procedure is also proposed to assist in implementing Bayesian melding given the increased data size with models informed by imagery. Measurement error models are another approach to incorporating uncertainty when data is informed by imagery. These models for measurement uncertainty, considered in a Bayesian conditional independence framework, are applied to ecological data generated from imagery. The models are shown to be appropriate and useful in certain situations. Measurement uncertainty is also considered in the context of change detection when two images are not co-registered. An approach for detecting change in two successive images is proposed that is not affected by registration. The procedure uses the Kolmogorov-Smirnov test on homogeneous segments of an image to detect change, with the homogeneous segments determined using a Bayesian mixture model of pixel values. Using the mixture model to segment an image also allows for uncertainty in the composition of an image. This thesis concludes by comparing several different Bayesian image segmentation approaches that allow for uncertainty regarding the allocation of pixels to different ground components. Each segmentation approach is applied to a data set of chlorophyll values and shown to have different benefits and drawbacks depending on the aims of the analysis.
Resumo:
This paper presents a formulation of image-based visual servoing (IBVS) for a spherical camera where coordinates are parameterized in terms of colatitude and longitude: IBVSSph. The image Jacobian is derived and simulation results are presented for canonical rotational, translational as well as general motion. Problems with large rotations that affect the planar perspective form of IBVS are not present on the sphere, whereas the desirable robustness properties of IBVS are shown to be retained. We also describe a structure from motion (SfM) system based on camera-centric spherical coordinates and show how a recursive estimator can be used to recover structure. The spherical formulations for IBVS and SfM are particularly suitable for platforms, such as aerial and underwater robots, that move in SE(3).
Resumo:
In this paper a generic decoupled imaged-based control scheme for calibrated cameras obeying the unified projection model is proposed. The proposed decoupled scheme is based on the surface of object projections onto the unit sphere. Such features are invariant to rotational motions. This allows the control of translational motion independently from the rotational motion. Finally, the proposed results are validated with experiments using a classical perspective camera as well as a fisheye camera mounted on a 6 dofs robot platform.
Resumo:
Multiresolution techniques are being extensively used in signal processing literature. This paper has two parts, in the first part we derive a relationship between the general degradation model (Y=BX+W) at coarse and fine resolutions. In the second part we develop a signal restoration scheme in a multiresolution framework and demonstrate through experiments that the knowledge of the relationship between the degradation model at different resolutions helps in obtaining computationally efficient restoration scheme.
Resumo:
This paper considers the question of designing a fully image-based visual servo control for a class of dynamic systems. The work is motivated by the ongoing development of image-based visual servo control of small aerial robotic vehicles. The kinematics and dynamics of a rigid-body dynamical system (such as a vehicle airframe) maneuvering over a flat target plane with observable features are expressed in terms of an unnormalized spherical centroid and an optic flow measurement. The image-plane dynamics with respect to force input are dependent on the height of the camera above the target plane. This dependence is compensated by introducing virtual height dynamics and adaptive estimation in the proposed control. A fully nonlinear adaptive control design is provided that ensures asymptotic stability of the closed-loop system for all feasible initial conditions. The choice of control gains is based on an analysis of the asymptotic dynamics of the system. Results from a realistic simulation are presented that demonstrate the performance of the closed-loop system. To the author's knowledge, this paper documents the first time that an image-based visual servo control has been proposed for a dynamic system using vision measurement for both position and velocity.
Resumo:
This paper presents a technique for tracking road edges in a panoramic image sequence. The major contribution is that instead of unwarping the image to find parallel lines representing the road edges, we choose to warp the parallel groundplane lines into the image plane of the equiangular panospheric camera. Updating the parameters of the line thus involves searching a very small number of pixels in the panoramic image, requiring considerably less computation than unwarping. Results using real-world images, including shadows, intersections and curves, are presented.
Resumo:
Robust image hashing seeks to transform a given input image into a shorter hashed version using a key-dependent non-invertible transform. These image hashes can be used for watermarking, image integrity authentication or image indexing for fast retrieval. This paper introduces a new method of generating image hashes based on extracting Higher Order Spectral features from the Radon projection of an input image. The feature extraction process is non-invertible, non-linear and different hashes can be produced from the same image through the use of random permutations of the input. We show that the transform is robust to typical image transformations such as JPEG compression, noise, scaling, rotation, smoothing and cropping. We evaluate our system using a verification-style framework based on calculating false match, false non-match likelihoods using the publicly available Uncompressed Colour Image database (UCID) of 1320 images. We also compare our results to Swaminathan’s Fourier-Mellin based hashing method with at least 1% EER improvement under noise, scaling and sharpening.