231 resultados para Consistent Covariance-matrix


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The value and effectiveness of driver training as a means of improving driver behaviour and road safety continues to fuel research and societal debates. Knowledge about what are the characteristics of safe driving that need to be learnt is extensive. Research has shown that young drivers are over represented in crash statistics. The encouraging fact is that novice drivers have shown improvement in road scanning pattern after training. This paper presents a driver behaviour study conducted on a closed circuit track. A group of experienced and novice drivers performed repeated multiple manoeuvres (i.e. turn, overtake and lane change) under identical conditions Variables related to the driver, vehicle and environment were recorded in a research vehicle equipped with multiple in-vehicle sensors such as GPS accelerometers, vision processing, eye tracker and laser scanner. Each group exhibited consistently a set of driving pattern characterising a particular group. Behaviour such as the indicator usage before lane change, following distance while performing a manoeuvre were among the consistent observed behaviour differentiating novice from experienced drivers. This paper will highlight the results of our study and emphasize the need for effective driver training programs focusing on young and novice drivers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we consider the case of large cooperative communication systems where terminals use the protocol known as slotted amplify-and-forward protocol to aid the source in its transmission. Using the perturbation expansion methods of resolvents and large deviation techniques we obtain an expression for the Stieltjes transform of the asymptotic eigenvalue distribution of a sample covariance random matrix of the type HH† where H is the channel matrix of the transmission model for the transmission protocol we consider. We prove that the resulting expression is similar to the Stieltjes transform in its quadratic equation form for the Marcenko-Pastur distribution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Protecting slow sand filters (SSFs) from high-turbidity waters by pretreatment using pebble matrix filtration (PMF) has previously been studied in the laboratory at University College London, followed by pilot field trials in Papua New Guinea and Serbia. The first full-scale PMF plant was completed at a water-treatment plant in Sri Lanka in 2008, and during its construction, problems were encountered in sourcing the required size of pebbles and sand as filter media. Because sourcing of uniform-sized pebbles may be problematic in many countries, the performance of alternative media has been investigated for the sustainability of the PMF system. Hand-formed clay balls made at a 100-yearold brick factory in the United Kingdom appear to have satisfied the role of pebbles, and a laboratory filter column was operated by using these clay balls together with recycled crushed glass as an alternative to sand media in the PMF. Results showed that in countries where uniform-sized pebbles are difficult to obtain, clay balls are an effective and feasible alternative to natural pebbles. Also, recycled crushed glass performed as well as or better than silica sand as an alternative fine media in the clarification process, although cleaning by drainage was more effective with sand media. In the tested filtration velocity range of ð0:72–1:33Þ m=h and inlet turbidity range of (78–589) NTU, both sand and glass produced above 95% removal efficiencies. The head loss development during clogging was about 30% higher in sand than in glass media.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studying the rate of cell migration provides insight into fundamental cell biology as well as a tool to assess the functionality of synthetic surfaces and soluble environments used in tissue engineering. The traditional tools used to study cell migration include the fence and wound healing assays. In this paper we describe the development of a microchannel based device for the study of cell migration on defined surfaces. We demonstrate that this device provides a superior tool, relative to the previously mentioned assays, for assessing the propagation rate of cell wave fronts. The significant advantage provided by this technology is the ability to maintain a virgin surface prior to the commencement of the cell migration assay. Here, the device is used to assess rates of mouse fibroblasts (NIH 3T3) and human osteosarcoma (SaOS2) cell migration on surfaces functionalized with various extracellular matrix proteins as a demonstration that confining cell migration within a microchannel produces consistent and robust data. The device design enables rapid and simplistic assessment of multiple repeats on a single chip, where surfaces have not been previously exposed to cells or cellular secretions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work a novel hybrid approach is presented that uses a combination of both time domain and frequency domain solution strategies to predict the power distribution within a lossy medium loaded within a waveguide. The problem of determining the electromagnetic fields evolving within the waveguide and the lossy medium is decoupled into two components, one for computing the fields in the waveguide including a coarse representation of the medium (the exterior problem) and one for a detailed resolution of the lossy medium (the interior problem). A previously documented cell-centred Maxwell’s equations numerical solver can be used to resolve the exterior problem accurately in the time domain. Thereafter the discrete Fourier transform can be applied to the computed field data around the interface of the medium to estimate the frequency domain boundary condition in-formation that is needed for closure of the interior problem. Since only the electric fields are required to compute the power distribution generated within the lossy medium, the interior problem can be resolved efficiently using the Helmholtz equation. A consistent cell-centred finite-volume method is then used to discretise this equation on a fine mesh and the underlying large, sparse, complex matrix system is solved for the required electric field using the iterative Krylov subspace based GMRES iterative solver. It will be shown that the hybrid solution methodology works well when a single frequency is considered in the evaluation of the Helmholtz equation in a single mode waveguide. A restriction of the scheme is that the material needs to be sufficiently lossy, so that any penetrating waves in the material are absorbed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kernel-based learning algorithms work by embedding the data into a Euclidean space, and then searching for linear relations among the embedded data points. The embedding is performed implicitly, by specifying the inner products between each pair of points in the embedding space. This information is contained in the so-called kernel matrix, a symmetric and positive semidefinite matrix that encodes the relative positions of all points. Specifying this matrix amounts to specifying the geometry of the embedding space and inducing a notion of similarity in the input space - classical model selection problems in machine learning. In this paper we show how the kernel matrix can be learned from data via semidefinite programming (SDP) techniques. When applied to a kernel matrix associated with both training and test data this gives a powerful transductive algorithm -using the labeled part of the data one can learn an embedding also for the unlabeled part. The similarity between test points is inferred from training points and their labels. Importantly, these learning problems are convex, so we obtain a method for learning both the model class and the function without local minima. Furthermore, this approach leads directly to a convex method for learning the 2-norm soft margin parameter in support vector machines, solving an important open problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The risk, or probability of error, of the classifier produced by the AdaBoost algorithm is investigated. In particular, we consider the stopping strategy to be used in AdaBoost to achieve universal consistency. We show that provided AdaBoost is stopped after n1-ε iterations---for sample size n and ε ∈ (0,1)---the sequence of risks of the classifiers it produces approaches the Bayes risk.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we examine the problem of prediction with expert advice in a setup where the learner is presented with a sequence of examples coming from different tasks. In order for the learner to be able to benefit from performing multiple tasks simultaneously, we make assumptions of task relatedness by constraining the comparator to use a lesser number of best experts than the number of tasks. We show how this corresponds naturally to learning under spectral or structural matrix constraints, and propose regularization techniques to enforce the constraints. The regularization techniques proposed here are interesting in their own right and multitask learning is just one application for the ideas. A theoretical analysis of one such regularizer is performed, and a regret bound that shows benefits of this setup is reported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kernel-based learning algorithms work by embedding the data into a Euclidean space, and then searching for linear relations among the embedded data points. The embedding is performed implicitly, by specifying the inner products between each pair of points in the embedding space. This information is contained in the so-called kernel matrix, a symmetric and positive definite matrix that encodes the relative positions of all points. Specifying this matrix amounts to specifying the geometry of the embedding space and inducing a notion of similarity in the input space -- classical model selection problems in machine learning. In this paper we show how the kernel matrix can be learned from data via semi-definite programming (SDP) techniques. When applied to a kernel matrix associated with both training and test data this gives a powerful transductive algorithm -- using the labelled part of the data one can learn an embedding also for the unlabelled part. The similarity between test points is inferred from training points and their labels. Importantly, these learning problems are convex, so we obtain a method for learning both the model class and the function without local minima. Furthermore, this approach leads directly to a convex method to learn the 2-norm soft margin parameter in support vector machines, solving another important open problem. Finally, the novel approach presented in the paper is supported by positive empirical results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extracellular matrix regulates many cellular processes likely to be important for development and regression of corpora lutea. Therefore, we identified the types and components of the extracellular matrix of the human corpus luteum at different stages of the menstrual cycle. Two different types of extracellular matrix were identified by electron microscopy; subendothelial basal laminas and an interstitial matrix located as aggregates at irregular intervals between the non-vascular cells. No basal laminas were associated with luteal cells. At all stages, collagen type IV α1 and laminins α5, β2 and γ1 were localized by immunohistochemistry to subendothelial basal laminas, and collagen type IV α1 and laminins α2, α5, β1 and β2 localized in the interstitial matrix. Laminin α4 and β1 chains occurred in the subendothelial basal lamina from mid-luteal stage to regression; at earlier stages, a punctate pattern of staining was observed. Therefore, human luteal subendothelial basal laminas potentially contain laminin 11 during early luteal development and, additionally, laminins 8, 9 and 10 at the mid-luteal phase. Laminin α1 and α3 chains were not detected in corpora lutea. Versican localized to the connective tissue extremities of the corpus luteum. Thus, during the formation of the human corpus luteum, remodelling of extracellular matrix does not result in basal laminas as present in the adrenal cortex or ovarian follicle. Instead, novel aggregates of interstitial matrix of collagen and laminin are deposited within the luteal parenchyma, and it remains to be seen whether this matrix is important for maintaining the luteal cell phenotype.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Uncontrolled fibroblast growth factor (FGF) signaling can lead to human diseases, necessitating multiple layers of self-regulatory control mechanisms to keep its activity in check. Herein, we demonstrate that FGF9 and FGF20 ligands undergo a reversible homodimerization, occluding their key receptor binding sites. To test the role of dimerization in ligand autoinhibition, we introduced structure-based mutations into the dimer interfaces of FGF9 and FGF20. The mutations weakened the ability of the ligands to dimerize, effectively increasing the concentrations of monomeric ligands capable of binding and activating their cognate FGF receptor in vitro and in living cells. Interestingly, the monomeric ligands exhibit reduced heparin binding, resulting in their increased radii of heparan sulfate-dependent diffusion and biologic action, as evidenced by the wider dilation area of ex vivo lung cultures in response to implanted mutant FGF9-loaded beads. Hence, our data demonstrate that homodimerization autoregulates FGF9 and FGF20's receptor binding and concentration gradients in the extracellular matrix. Our study is the first to implicate ligand dimerization as an autoregulatory mechanism for growth factor bioactivity and sets the stage for engineering modified FGF9 subfamily ligands, with desired activity for use in both basic and translational research.