68 resultados para California mine


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study presents a comprehensive mathematical model for open pit mine block sequencing problem which considers technical aspects of real-life mine operations. As the open pit block sequencing problem is an NP-hard, state-of-the-art heuristics algorithms, including constructive heuristic, local search, simulated annealing, and tabu search are developed and coded using MATLAB programming language. Computational experiments show that the proposed algorithms are satisfactory to solve industrial-scale instances. Numerical investigation and sensitivity analysis based on real-world data are also conducted to provide insightful and quantitative recommendations for mine schedulers and planners.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a new multi-resource multi-stage mine production timetabling problem for optimising the open-pit drilling, blasting and excavating operations under equipment capacity constraints. The flow process is analysed based on the real-life data from an Australian iron ore mine site. The objective of the model is to maximise the throughput and minimise the total idle times of equipment at each stage. The following comprehensive mining attributes and constraints are considered: types of equipment; operating capacities of equipment; ready times of equipment; speeds of equipment; block-sequence-dependent movement times; equipment-assignment-dependent operational times; etc. The model also provides the availability and usage of equipment units at multiple operational stages such as drilling, blasting and excavating stages. The problem is formulated by mixed integer programming and solved by ILOG-CPLEX optimiser. The proposed model is validated with extensive computational experiments to improve mine production efficiency at the operational level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: It is relatively common for many mine workers in Australia to drive an average of 250 kilometers to and from work following long shifts and shift blocks. Despite the long distances travelled following long shifts of 12- to 14-hours, there is evidence to suggest that these workers are not engaging in a break following their shift prior to driving home. This naturally raises issues of fatigue and sleepiness when driving. There is limited research in respect to commuting behaviours of mine workers and little is known about the factors that influence these workers to leave site immediately following their shift. Using the theory of planned behaviour, this paper examines individual control beliefs that encourage or prevent workers from leaving the site immediately following their shift block. Method: Data was collected using a cross-sectional survey. The survey instrument was developed following a series of in-depth interviews with workers from a Queensland coal mine (n=37). The quantitative written survey sample (n=461) was drawn from the same coal mine and consisted of workers from all levels of the organisation. Results: The results examine workers intentions to leave the work site and drive home immediately following a shift block. The results show differences in control beliefs between workers finishing night shifts compared with those finishing day shifts. Implications: An understanding of these control beliefs may potentially inform more targeted intervention strategies in the attempt to encourage a safer approach to driving home following shift blocks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In open-cut strip mining, waste material is placed in-pit to minimise operational mine costs. Slope failures in these spoil piles pose a significant safety risk to personnel, along with a financial risk from loss of equipment and scheduling delays. It has been observed that most spoil pile failures occur when the pit has been previously filled with water and then subsequently dewatered. The failures are often initiated at the base of spoil piles where the material can undergo significant slaking (disintegration) over time due to overburden pressure and water saturation. It is important to understand how the mechanical properties of base spoil material are affected by slaking when designing safe spoil pile slope angles, heights, and dewatering rates. In this study, fresh spoil material collected from a coal mine in Brown Basin Coalfield of Queensland, Australia was subjected to high overburden pressure (0 – 900 kPa) under saturated condition and maintained over a period of time (0 – 6 months) allowing the material to slake. To create the above conditions, laboratory designed pressure chambers were used. Once a spoil sample was slaked under certain overburden pressure over a period of time, it was tested for classification, permeability, and strength properties. Results of this testing program suggested that the slaking of saturated coal mine spoil increase with overburden pressure and the time duration over which the overburden pressure was maintained. Further, it was observed that shear strength and permeability of spoil decreased with increase in spoil slaking.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article contributes an original integrated model of an open-pit coal mine for supporting energy-efficient decisions. Mixed integer linear programming is used to formulate a general integrated model of the operational energy consumption of four common open-pit coal mining subsystems: excavation and haulage, stockpiles, processing plants and belt conveyors. Mines are represented as connected instances of the four subsystems, in a flow sheet manner, which are then fitted to data provided by the mine operators. Solving the integrated model ensures the subsystems’ operations are synchronised and whole-of-mine energy efficiency is encouraged. An investigation on a case study of an open-pit coal mine is conducted to validate the proposed methodology. Opportunities are presented for using the model to aid energy-efficient decision-making at various levels of a mine, and future work to improve the approach is described.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a new multi-stage mine production timetabling (MMPT) model to optimise open-pit mine production operations including drilling, blasting and excavating under real-time mining constraints. The MMPT problem is formulated as a mixed integer programming model and can be optimally solved for small-size MMPT instances by IBM ILOG-CPLEX. Due to NP-hardness, an improved shifting-bottleneck-procedure algorithm based on the extended disjunctive graph is developed to solve large-size MMPT instances in an effective and efficient way. Extensive computational experiments are presented to validate the proposed algorithm that is able to efficiently obtain the near-optimal operational timetable of mining equipment units. The advantages are indicated by sensitivity analysis under various real-life scenarios. The proposed MMPT methodology is promising to be implemented as a tool for mining industry because it is straightforwardly modelled as a standard scheduling model, efficiently solved by the heuristic algorithm, and flexibly expanded by adopting additional industrial constraints.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis investigates factors that impact the energy efficiency of a mining operation. An innovative mathematical framework and solution approach are developed to model, solve and analyse an open-pit coal mine. A case study in South East Queensland is investigated to validate the approach and explore the opportunities for using it to aid long, medium and short term decision makers.