272 resultados para CO selective oxidation
Resumo:
In this study, a nanofiber mesh made by co-electrospinning medical grade poly(epsilon-caprolactone) and collagen (mPCL/Col) was fabricated and studied. Its mechanical properties and characteristics were analyzed and compared to mPCL meshes. mPCL/Col meshes showed a reduction in strength but an increase in ductility when compared to PCL meshes. In vitro assays revealed that mPCL/Col supported the attachment and proliferation of smooth muscle cells on both sides of the mesh. In vivo studies in the corpus cavernosa of rabbits revealed that the mPCL/Col scaffold used in conjunction with autologous smooth muscle cells resulted in better integration with host tissue when compared to cell free scaffolds. On a cellular level preseeded scaffolds showed a minimized foreign body reaction.
Resumo:
Continuous learning and development has become increasingly important in the information age. However, employees with limited formal education in lower status occupations may be disadvantaged in their opportunities for development, as their jobs tend to require more limited knowledge and skills. In mature age, such workers may be subject to cumulative disadvantage with respect to work related learning and development, as well as negative stereotyping. This thesis concerns work related learning and development from a lifespan development psychology perspective. Development across the lifespan is grounded in biocultural co-constructivism. That is, the reciprocal influences of the individual and environment produce change in the individual. Existing theories and models of adaptive development attempt to explain how developmental resources are allocated across the lifespan. These included the Meta- theory of Selective Optimisation with Compensation, Dual Process Model of Self Regulation, and Developmental Regulation via Optimisation and Primary and Secondary Control. These models were integrated to create the Model of Adaptive Development for Work Related Learning. The Learning and Development Survey (LDS) was constructed to measure the hypothesised processes of adaptive development for work related learning, which were individual goal selection, individual goal engagement, individual goal disengagement, organisational opportunities (selection and engagement), and organisational constraints. Data collection was undertaken in two phases: the pilot study and the main study. The objective of the pilot study was to test the LDS on a target population of 112 employees from a local government organisation. Exploratory factor analysis reduced the pilot version of the survey to 38 items encompassing eight constructs which covered the processes of the model of adaptive development for work related learning. In the main study, the Revised Learning and Development Survey (R-LDS) was administered to another group of 137 employees from the local government organisation, as well as 110 employees from a private healthcare organisation. The purpose of the main study was to validate the R-LDS on two different groups to provide evidence of stability, and compare survey scores according to age and occupational status to determine construct validity. Findings from the main study indicated that only four constructs of the R-LDS were stable, which were organisational opportunities – selection, individual goal engagement, organisational constraints – disengagement and organisational opportunities – engagement. In addition, MANOVA studies revealed that the demographic variables affected organisational opportunities and constraints in the workplace, although individual goal engagement was not influenced by age. The findings from the pilot and main study partially supported the model of adaptive development for work related learning. Given that only four factors displayed adequate reliability in terms of internal consistency and stability, the findings suggest that individual goal selection and individual goal disengagement are less relevant to work related learning and development. Some recent research which emerged during the course of the current study has suggested that individual goal selection and individual goal disengagement are more relevant when goal achievement is impeded by biological constraints such as ageing. However, correlations between the retained factors support the model of adaptive development for work related learning, and represent the role of biocultural co-constructivism in development. Individual goal engagement was positively correlated with both opportunity factors (selection and engagement), while organisational constraints – disengagement was negatively correlated with organisational opportunities – selection. Demographic findings indicated that higher occupational status was associated with more opportunities for development. Age was associated with fewer opportunities or greater constraints for development, especially for lower status workers.
Resumo:
This article introduces a special issue on the topic of co-creative labour. The term co-creation is used to describe the phenomenon of consumers increasingly participating in the process of making and circulating media content and experiences. Practices of user-created content and user-led innovation are now significant sources of both economic and cultural value. But how should we understand and analyse these value-generating activities? What are the identities and forms of agency that constitute these emerging co-creative relations? Should we define these activities as a form of labour and what are the implications and impacts of co-creative practices on the employment conditions and professional identities of people working in the creative industries? In answering these questions we argue that careful attention must be paid to how the participants themselves (both professional and non-professional, commercial and non-commercial) negotiate and navigate the meanings and possibilities of these emerging co-creative relationships for mutual benefit. Co-Creative media production is perhaps a disruptive agent of change that sits uncomfortably with our current understandings and theories of work and labour. The articles in this special issue follow and unpack the often diverse and contradictory ways in which the participants themselves use and remake the social categories of work and labour as they seek to co-ordinate and contest co-creative media practices.
Resumo:
The ways in which the "traditional" tension between words and artwork can be perceived has huge implications for understanding the relationship between critical or theoretical interpretation, art and practice, and research. Within the practice-led PhD this can generate a strange sense of disjuncture for the artist-researcher particularly when engaged in writing the exegesis. This paper aims to explore this tension through an introductory investigation of the work of the philosopher Andrew Benjamin. For Benjamin criticism completes the work of art. Criticism is, with the artwork, at the centre of our experience and theoretical understanding of art – in this way the work of art and criticism are co-productive. The reality of this co-productivity can be seen in three related articles on the work of American painter Marcia Hafif. In each of these articles there are critical negotiations of just how the work of art operates as art and theoretically, within the field of art. This focus has important ramifications for the writing and reading of the exegesis within the practice-led research higher degree. By including art as a significant part of the research reporting process the artist-researcher is also staking a claim as to the critical value of their work. Rather than resisting the tension between word and artwork the practice-led artist-researcher need to embrace the co-productive nature of critical word and creative work to more completely articulate their practice and its significance as research. The ideal venue and opportunity for this is the exegesis.
Resumo:
Transition metal oxides are functional materials that have advanced applications in many areas, because of their diverse properties (optical, electrical, magnetic, etc.), hardness, thermal stability and chemical resistance. Novel applications of the nanostructures of these oxides are attracting significant interest as new synthesis methods are developed and new structures are reported. Hydrothermal synthesis is an effective process to prepare various delicate structures of metal oxides on the scales from a few to tens of nanometres, specifically, the highly dispersed intermediate structures which are hardly obtained through pyro-synthesis. In this thesis, a range of new metal oxide (stable and metastable titanate, niobate) nanostructures, namely nanotubes and nanofibres, were synthesised via a hydrothermal process. Further structure modifications were conducted and potential applications in catalysis, photocatalysis, adsorption and construction of ceramic membrane were studied. The morphology evolution during the hydrothermal reaction between Nb2O5 particles and concentrated NaOH was monitored. The study demonstrates that by optimising the reaction parameters (temperature, amount of reactants), one can obtain a variety of nanostructured solids, from intermediate phases niobate bars and fibres to the stable phase cubes. Trititanate (Na2Ti3O7) nanofibres and nanotubes were obtained by the hydrothermal reaction between TiO2 powders or a titanium compound (e.g. TiOSO4·xH2O) and concentrated NaOH solution by controlling the reaction temperature and NaOH concentration. The trititanate possesses a layered structure, and the Na ions that exist between the negative charged titanate layers are exchangeable with other metal ions or H+ ions. The ion-exchange has crucial influence on the phase transition of the exchanged products. The exchange of the sodium ions in the titanate with H+ ions yields protonated titanate (H-titanate) and subsequent phase transformation of the H-titanate enable various TiO2 structures with retained morphology. H-titanate, either nanofibres or tubes, can be converted to pure TiO2(B), pure anatase, mixed TiO2(B) and anatase phases by controlled calcination and by a two-step process of acid-treatment and subsequent calcination. While the controlled calcination of the sodium titanate yield new titanate structures (metastable titanate with formula Na1.5H0.5Ti3O7, with retained fibril morphology) that can be used for removal of radioactive ions and heavy metal ions from water. The structures and morphologies of the metal oxides were characterised by advanced techniques. Titania nanofibres of mixed anatase and TiO2(B) phases, pure anatase and pure TiO2(B) were obtained by calcining H-titanate nanofibres at different temperatures between 300 and 700 °C. The fibril morphology was retained after calcination, which is suitable for transmission electron microscopy (TEM) analysis. It has been found by TEM analysis that in mixed-phase structure the interfaces between anatase and TiO2(B) phases are not random contacts between the engaged crystals of the two phases, but form from the well matched lattice planes of the two phases. For instance, (101) planes in anatase and (101) planes of TiO2(B) are similar in d spaces (~0.18 nm), and they join together to form a stable interface. The interfaces between the two phases act as an one-way valve that permit the transfer of photogenerated charge from anatase to TiO2(B). This reduces the recombination of photogenerated electrons and holes in anatase, enhancing the activity for photocatalytic oxidation. Therefore, the mixed-phase nanofibres exhibited higher photocatalytic activity for degradation of sulforhodamine B (SRB) dye under ultraviolet (UV) light than the nanofibres of either pure phase alone, or the mechanical mixtures (which have no interfaces) of the two pure phase nanofibres with a similar phase composition. This verifies the theory that the difference between the conduction band edges of the two phases may result in charge transfer from one phase to the other, which results in effectively the photogenerated charge separation and thus facilitates the redox reaction involving these charges. Such an interface structure facilitates charge transfer crossing the interfaces. The knowledge acquired in this study is important not only for design of efficient TiO2 photocatalysts but also for understanding the photocatalysis process. Moreover, the fibril titania photocatalysts are of great advantage when they are separated from a liquid for reuse by filtration, sedimentation, or centrifugation, compared to nanoparticles of the same scale. The surface structure of TiO2 also plays a significant role in catalysis and photocatalysis. Four types of large surface area TiO2 nanotubes with different phase compositions (labelled as NTA, NTBA, NTMA and NTM) were synthesised from calcination and acid treatment of the H-titanate nanotubes. Using the in situ FTIR emission spectrescopy (IES), desorption and re-adsorption process of surface OH-groups on oxide surface can be trailed. In this work, the surface OH-group regeneration ability of the TiO2 nanotubes was investigated. The ability of the four samples distinctively different, having the order: NTA > NTBA > NTMA > NTM. The same order was observed for the catalytic when the samples served as photocatalysts for the decomposition of synthetic dye SRB under UV light, as the supports of gold (Au) catalysts (where gold particles were loaded by a colloid-based method) for photodecomposition of formaldehyde under visible light and for catalytic oxidation of CO at low temperatures. Therefore, the ability of TiO2 nanotubes to generate surface OH-groups is an indicator of the catalytic activity. The reason behind the correlation is that the oxygen vacancies at bridging O2- sites of TiO2 surface can generate surface OH-groups and these groups facilitate adsorption and activation of O2 molecules, which is the key step of the oxidation reactions. The structure of the oxygen vacancies at bridging O2- sites is proposed. Also a new mechanism for the photocatalytic formaldehyde decomposition with the Au-TiO2 catalysts is proposed: The visible light absorbed by the gold nanoparticles, due to surface plasmon resonance effect, induces transition of the 6sp electrons of gold to high energy levels. These energetic electrons can migrate to the conduction band of TiO2 and are seized by oxygen molecules. Meanwhile, the gold nanoparticles capture electrons from the formaldehyde molecules adsorbed on them because of gold’s high electronegativity. O2 adsorbed on the TiO2 supports surface are the major electron acceptor. The more O2 adsorbed, the higher the oxidation activity of the photocatalyst will exhibit. The last part of this thesis demonstrates two innovative applications of the titanate nanostructures. Firstly, trititanate and metastable titanate (Na1.5H0.5Ti3O7) nanofibres are used as intelligent absorbents for removal of radioactive cations and heavy metal ions, utilizing the properties of the ion exchange ability, deformable layered structure, and fibril morphology. Environmental contamination with radioactive ions and heavy metal ions can cause a serious threat to the health of a large part of the population. Treatment of the wastes is needed to produce a waste product suitable for long-term storage and disposal. The ion-exchange ability of layered titanate structure permitted adsorption of bivalence toxic cations (Sr2+, Ra2+, Pb2+) from aqueous solution. More importantly, the adsorption is irreversible, due to the deformation of the structure induced by the strong interaction between the adsorbed bivalent cations and negatively charged TiO6 octahedra, and results in permanent entrapment of the toxic bivalent cations in the fibres so that the toxic ions can be safely deposited. Compared to conventional clay and zeolite sorbents, the fibril absorbents are of great advantage as they can be readily dispersed into and separated from a liquid. Secondly, new generation membranes were constructed by using large titanate and small ã-alumina nanofibres as intermediate and top layers, respectively, on a porous alumina substrate via a spin-coating process. Compared to conventional ceramic membranes constructed by spherical particles, the ceramic membrane constructed by the fibres permits high flux because of the large porosity of their separation layers. The voids in the separation layer determine the selectivity and flux of a separation membrane. When the sizes of the voids are similar (which means a similar selectivity of the separation layer), the flux passing through the membrane increases with the volume of the voids which are filtration passages. For the ideal and simplest texture, a mesh constructed with the nanofibres 10 nm thick and having a uniform pore size of 60 nm, the porosity is greater than 73.5 %. In contrast, the porosity of the separation layer that possesses the same pore size but is constructed with metal oxide spherical particles, as in conventional ceramic membranes, is 36% or less. The membrane constructed by titanate nanofibres and a layer of randomly oriented alumina nanofibres was able to filter out 96.8% of latex spheres of 60 nm size, while maintaining a high flux rate between 600 and 900 Lm–2 h–1, more than 15 times higher than the conventional membrane reported in the most recent study.
Thermal analysis of synthetic reevesite and cobalt substituted reevesite (Ni,Co)6Fe2(OH)16(CO3)•4H2O
Resumo:
The mineral reevesite and the cobalt substituted reevesite have been synthesised. The d(003) spacings of the minerals ranged from 7.54 to 7.95 Å. The maximum d(003) value occurred at around Ni:Co 0.4:0.6. This maximum in interlayer distance is proposed to be due to a greater number of carbonate anions and water molecules intercalated into the structure. The stability of the reevesite and cobalt doped reevesite was determined by thermogravimetric analysis. The maximum temperature of the reevesite occurs for the unsubstituted reevesite and is around 220°C. The effect of cobalt substitution results in a decrease in thermal stability of the reevesites. Four thermal decomposition steps are observed and are attributed to dehydration, dehydroxylation and decarbonation, decomposition of the formed carbonate and oxygen loss at ~807 °C. A mechanism for the thermal decomposition of the reevesite and the cobalt substituted reevesite is proposed.
Resumo:
A technique is described whereby micro-ATR/FTIR imaging can be used to follow polymer degradation reactions in situ in real time. The internal reflection element (IRE) assembly is removed from the ATR objective and polymer is solvent cast directly onto the IRE surface. The polymer is then subjected to degradation conditions and molecular structural changes monitored by periodically replacing the IRE assembly back in the ATR objective and collecting spectra which can be used to construct images. This approach has the benefit that the same part of the sample is always studied, and that contact by pressure which might damage the polymer surface is not required. The technique is demonstrated using the polymer Topas which was degraded by exposure to UVC light in air.
Resumo:
We examine the nature and extent of statutory executive stock option (ESO) disclosures by Australian listed companies over the 2001 to 2004 period, and the influence of corporate governance mechanisms on these disclosures. Our results show a progressive increase in overall compliance from 2001 to 2004. However, despite the improved compliance, the results reveal managements’ continued reluctance to disclose more sensitive ESO information. Factors associated with good internal governance, including board independence, audit committee independence and effectiveness, and compensation committee independence and effectiveness are found to contribute to improved compliance. Similarly, certain external governance factors are associated with improved disclosure, including external auditor quality, shareholder activism (as proxied by companies identified as poor performers by the Australian Shareholders’ Association), and regulatory intervention.