467 resultados para Business process model
Resumo:
While business process management (BPM) is often associated with large investments in IT systems and process analysis projects, the success of BPM initiatives largely depends on the cultural readiness of organizations for process management. In this article, we introduce a model that helps to understand the role of culture in managing business processes and to take the right investments into the development of organizational culture. For that purpose, we also describe an assessment tool that allows examining the supportiveness of an organizational culture for BPM initiatives. We show how the results of such an assessment help organizations to determine in which areas of a corporation investments in cultural change can be most beneficial.
Resumo:
Process modeling grammars are used to create models of business processes. In this paper, we discuss how different routing symbol designs affect an individual's ability to comprehend process models. We conduct an experiment with 154 students to ascertain which visual design principles influence process model comprehension. Our findings suggest that design principles related to perceptual discriminability and pop out improve comprehension accuracy. Furthermore, semantic transparency and aesthetic design of symbols lower the perceived difficulty of comprehension. Our results inform important principles about notational design of process modeling grammars and the effective use of process modeling in practice.
Resumo:
Automated process discovery techniques aim at extracting models from information system logs in order to shed light into the business processes supported by these systems. Existing techniques in this space are effective when applied to relatively small or regular logs, but otherwise generate large and spaghetti-like models. In previous work, trace clustering has been applied in an attempt to reduce the size and complexity of automatically discovered process models. The idea is to split the log into clusters and to discover one model per cluster. The result is a collection of process models -- each one representing a variant of the business process -- as opposed to an all-encompassing model. Still, models produced in this way may exhibit unacceptably high complexity. In this setting, this paper presents a two-way divide-and-conquer process discovery technique, wherein the discovered process models are split on the one hand by variants and on the other hand hierarchically by means of subprocess extraction. The proposed technique allows users to set a desired bound for the complexity of the produced models. Experiments on real-life logs show that the technique produces collections of models that are up to 64% smaller than those extracted under the same complexity bounds by applying existing trace clustering techniques.
Resumo:
Business process management systems (BPMS) belong to a class of enterprise information systems that are characterized by the dependence on explicitly modeled process logic. Through the process logic, it is relatively easy to manage explicitly the routing and allocation of work items along a business process through the system. Inspired by the DeLone and McLean framework, we theorize that these process-aware system features are important attributes of system quality, which in turn will elevate key user evaluations such as perceived usefulness, and usage satisfaction. We examine this theoretical model using data collected from four different, mostly mature BPM system projects. Our findings validate the importance of input quality as well as allocation and routing attributes as antecedents of system quality, which, in turn, determines both usefulness and satisfaction with the system. We further demonstrate how service quality and workflow dependency are significant precursors to perceived usefulness. Our results suggest the appropriateness of a multi-dimensional conception of system quality for future research, and provide important design-oriented advice for the design and configuration of BPMSs.
Resumo:
Process-aware information systems (PAISs) can be configured using a reference process model, which is typically obtained via expert interviews. Over time, however, contextual factors and system requirements may cause the operational process to start deviating from this reference model. While a reference model should ideally be updated to remain aligned with such changes, this is a costly and often neglected activity. We present a new process mining technique that automatically improves the reference model on the basis of the observed behavior as recorded in the event logs of a PAIS. We discuss how to balance the four basic quality dimensions for process mining (fitness, precision, simplicity and generalization) and a new dimension, namely the structural similarity between the reference model and the discovered model. We demonstrate the applicability of this technique using a real-life scenario from a Dutch municipality.
Resumo:
Process models are often used to visualize and communicate workflows to involved stakeholders. Unfortunately, process modeling notations can be complex and need specific knowledge to be understood. Storyboards, as a visual language to illustrate workflows as sequences of images, provide natural visualization features that allow for better communication, to provide insight to people from non-process modelling expert domains. This paper proposes a visualization approach using a 3D virtual world environment to visualize storyboards for business process models. A prototype was built to present its applicability via generating output with examples of five major process model patterns and two non-trivial use cases. Illustrative results for the approach show the promise of using a 3D virtual world to visualize complex process models in an unambiguous and intuitive manner.
Resumo:
Business process modelling as a practice and research field has received great attention over recent years. Organizations invest significantly into process modelling in terms of training, tools, capabilities and resources. The return on this investment is a function of process model re-use, which we define as the recurring use of process models to support organizational work tasks. While prior research has examined re-use as a design principle, we explore re-use as a behaviour, because evidence suggest that analysts’ re-use of process models is indeed limited. In this paper we develop a two-stage conceptualization of the key object-, behaviour- and socioorganization-centric factors explaining process model re-use behaviour. We propose a theoretical model and detail implications for its operationalization and measurement. Our study can provide significant benefits to our understanding of process modelling and process model use as key practices in analysis and design.
Resumo:
Process models are used to convey semantics about business operations that are to be supported by an information system. A wide variety of professionals is targeted to use such models, including people who have little modeling or domain expertise. We identify important user characteristics that influence the comprehension of process models. Through a free simulation experiment, we provide evidence that selected cognitive abilities, learning style, and learning strategy influence the development of process model comprehension. These insights draw attention to the importance of research that views process model comprehension as an emergent learning process rather than as an attribute of the models as objects. Based on our findings, we identify a set of organizational intervention strategies that can lead to more successful process modeling workshops.
Resumo:
As organizations attempt to become more business process-oriented, existing role descriptions are revised and entire new business process-related roles emerge. A lot of attention is often being paid to the technological aspect of Business Process Management (BPM), but relatively little work has been done concerning the people factor of BPM and the specification of BPM expertise in particular. This study tries to close this gap by proposing a comprehensive BPM expertise model, which consolidates existing theories and related work. This model describes the key attributes characterizing “BPM expertise” and outlines their structure, dynamics, and interrelationships. Understanding BPM expertise is a predecessor to being able to develop and apply it effectively. This is the cornerstone of human capital and talent management in BPM.
Resumo:
Process mining has developed into a popular research discipline and nowadays its associated techniques are widely applied in practice. What is currently ill-understood is how the success of a process mining project can be measured and what the antecedent factors of process mining success are. We consider an improved, grounded understanding of these aspects of value to better manage the effectiveness and efficiency of process mining projects in practice. As such, we advance a model, tailored to the characteristics of process mining projects, which identifies and relates success factors and measures. We draw inspiration from the literature from related fields for the construction of a theoretical, a priori model. That model has been validated and re-specified on the basis of a multiple case study, which involved four industrial process mining projects. The unique contribution of this paper is that it presents the first set of success factors and measures on the basis of an analysis of real process mining projects. The presented model can also serve as a basis for further extension and refinement using insights from additional analyses.
Resumo:
Automated process discovery techniques aim at extracting process models from information system logs. Existing techniques in this space are effective when applied to relatively small or regular logs, but generate spaghetti-like and sometimes inaccurate models when confronted to logs with high variability. In previous work, trace clustering has been applied in an attempt to reduce the size and complexity of automatically discovered process models. The idea is to split the log into clusters and to discover one model per cluster. This leads to a collection of process models – each one representing a variant of the business process – as opposed to an all-encompassing model. Still, models produced in this way may exhibit unacceptably high complexity and low fitness. In this setting, this paper presents a two-way divide-and-conquer process discovery technique, wherein the discovered process models are split on the one hand by variants and on the other hand hierarchically using subprocess extraction. Splitting is performed in a controlled manner in order to achieve user-defined complexity or fitness thresholds. Experiments on real-life logs show that the technique produces collections of models substantially smaller than those extracted by applying existing trace clustering techniques, while allowing the user to control the fitness of the resulting models.
Resumo:
Real world business process models may consist of hundreds of elements and have sophisticated structure. Although there are tasks where such models are valuable and appreciated, in general complexity has a negative influence on model comprehension and analysis. Thus, means for managing the complexity of process models are needed. One approach is abstraction of business process models-creation of a process model which preserves the main features of the initial elaborate process model, but leaves out insignificant details. In this paper we study the structural aspects of process model abstraction and introduce an abstraction approach based on process structure trees (PST). The developed approach assures that the abstracted process model preserves the ordering constraints of the initial model. It surpasses pattern-based process model abstraction approaches, allowing to handle graph-structured process models of arbitrary structure. We also provide an evaluation of the proposed approach.
Resumo:
This book constitutes the proceedings of the Second Asia Pacific Conference on Business Process Management held in Brisbane, QLD, Australia, in July 2014. In all, 33 contributions from 12 countries were submitted. After each submission was reviewed by at least three Program Committee members, nine full papers were accepted for publication in this volume. These nine papers cover various topics that can be categorized under four main research focuses in BPM: process mining, process modeling and repositories, process model comparison, and process analysis.
Resumo:
Notwithstanding the interest over many years by scholars in modeling the internationalization of the firm, the initial transition for the firm from domestic to international operations remains under-researched. We identify the behavioral factors that are important at the pre-internationalization state and discuss how they may interrelate to influence a decision to commit to internationalization through export commencement. We study export commitment by proposing and constructing an index that incorporates the factors that influence a firm’s propensity to commit to export activities. Utilizing the items from this index in a logistic regression analysis, we distinguish between the pre-internationalization characteristics of exporting and non-exporting firms to better understand the key influences in export commitment. Implications are discussed.
Resumo:
In-memory databases have become a mainstay of enterprise computing offering significant performance and scalability boosts for online analytical and (to a lesser extent) transactional processing as well as improved prospects for integration across different applications through an efficient shared database layer. Significant research and development has been undertaken over several years concerning data management considerations of in-memory databases. However, limited insights are available on the impacts of applications and their supportive middleware platforms and how they need to evolve to fully function through, and leverage, in-memory database capabilities. This paper provides a first, comprehensive exposition into how in-memory databases impact Business Pro- cess Management, as a mission-critical and exemplary model-driven integration and orchestration middleware. Through it, we argue that in-memory databases will render some prevalent uses of legacy BPM middleware obsolete, but also open up exciting possibilities for tighter application integration, better process automation performance and some entirely new BPM capabilities such as process-based application customization. To validate the feasibility of an in-memory BPM, we develop a surprisingly simple BPM runtime embedded into SAP HANA and providing for BPMN-based process automation capabilities.