608 resultados para Bone development


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Novel nanostructures such as vertically aligned carbon nanotube (CNT) arrays have received increasing interest as drug delivery carriers. In the present study, two CNT arrays with extreme surface wettabilities are fabricated and their effects on the release of recombinant human bone morphogenetic protein-2 (rhBMP-2) are investigated. It is found that the superhydrophilic arrays retained a larger amount of rhBMP-2 than the superhydrophobic ones. Further use of a poloxamer diffusion layer delayed the initial burst and resulted in a greater total amount of rhBMP-2 released from both surfaces. In addition, rhBMP-2 bound to the superhydrophilic CNT arrays remained bioactive while they denatured on the superhydrophobic surfaces. These results are related to the combined effects of rhBMP-2 molecules interacting with poloxamer and the surface, which could be essential in the development of advanced carriers with tailored surface functionalities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pulmonary arterial hypertension (PAH) is a progressive disease characterized by lung endothelial dysfunction and vascular remodeling. Recently, bone marrow progenitor cells have been localized to PAH lungs, raising the question of their role in disease progression. Independently, serotonin (5-HT) and its receptors have been identified as contributors to the PAH pathogenesis. We hypothesized that 1 of these receptors, 5-HT(2B), is involved in bone marrow stem cell mobilization that participates in the development of PAH and pulmonary vascular remodeling. A first study revealed expression of 5-HT(2B) receptors by circulating c-kit(+) precursor cells, whereas mice lacking 5-HT(2B) receptors showed alterations in platelets and monocyte-macrophage numbers, and in myeloid lineages of bone marrow. Strikingly, mice with restricted expression of 5-HT(2B) receptors in bone marrow cells developed hypoxia or monocrotaline-induced increase in pulmonary pressure and vascular remodeling, whereas restricted elimination of 5-HT(2B) receptors on bone marrow cells confers a complete resistance. Moreover, ex vivo culture of human CD34(+) or mice c-kit(+) progenitor cells in the presence of a 5-HT(2B) receptor antagonist resulted in altered myeloid differentiation potential. Thus, we demonstrate that activation of 5-HT(2B) receptors on bone marrow lineage progenitors is critical for the development of PAH.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis focuses on the development of a humanised mouse model to investigate human breast cancer metastasis to bone, an incurable disease presenting a major medical challenge in our society. The method is based on tissue-engineered constructs with human cells that generate a human bone-like organ within mice. This novel platform is further applied to mimic human-specific mechanisms of breast cancer metastasis and growth in human bone, and in particular the role of specific cell adhesion molecules in this process is closely investigated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective Current treatments for cancer pain are often inadequate, particularly when metastasis to bone is involved. The addition to the treatment regimen of another drug that has a complementary analgesic effect may increase the overall analgesia without the necessity to increase doses, thus avoiding dose-related side effects. This project investigated the synergistic effect of the addition of the potassium channel (KCNQ2–3) modulator flupirtine to morphine treatment in a rat model of prostate cancer-induced bone pain. Design Syngeneic prostate cancer cells were injected into the right tibia of male Wistar rats under anesthesia. This led to expanding tumor within the bone in 2 weeks, together with the concurrent development of hyperalgesia to noxious heat. Paw withdrawal thresholds from noxious heat were measured before and after the maximum non-sedating doses of morphine and flupirtine given alone and in combinations. Dose-response curves for morphine (0.13–5.0 mg/kg ip) and flupirtine (1.25–10.0 mg/kg ip) given alone and in fixed-dose combinations were plotted and subjected to an isobolographic analysis. Results Both morphine (ED50 = 0.74 mg/kg) and flupirtine (ED50 = 3.32 mg/kg) caused dose-related anti-hyperalgesia at doses that did not cause sedation. Isobolographic analysis revealed that there was a synergistic interaction between flupirtine and morphine. Addition of flupirtine to morphine treatment improved morphine anti-hyperalgesia, and resulted in the reversal of cancer-induced heat hyperalgesia. Conclusions These results suggest that flupirtine in combination with morphine may be useful clinically to provide better analgesia at lower morphine doses in the management of pain caused by tumors growing in bone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Iterative computational models have been used to investigate the regulation of bone fracture healing by local mechanical conditions. Although their predictions replicate some mechanical responses and histological features, they do not typically reproduce the predominantly radial hard callus growth pattern observed in larger mammals. We hypothesised that this discrepancy results from an artefact of the models’ initial geometry. Using axisymmetric finite element models, we demonstrated that pre-defining a field of soft tissue in which callus may develop introduces high deviatoric strains in the periosteal region adjacent to the fracture. These bone-inhibiting strains are not present when the initial soft tissue is confined to a thin periosteal layer. As observed in previous healing models, tissue differentiation algorithms regulated by deviatoric strain predicted hard callus forming remotely and growing towards the fracture. While dilatational strain regulation allowed early bone formation closer to the fracture, hard callus still formed initially over a broad area, rather than expanding over time. Modelling callus growth from a thin periosteal layer successfully predicted the initiation of hard callus growth close to the fracture site. However, these models were still susceptible to elevated deviatoric strains in the soft tissues at the edge of the hard callus. Our study highlights the importance of the initial soft tissue geometry used for finite element models of fracture healing. If this cannot be defined accurately, alternative mechanisms for the prediction of early callus development should be investigated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bone-anchored prostheses are increasingly acknowledged as viable alternative method of attachment of artificial limb compared to socket-suspended prostheses. To date, a few osseointegration fixations are commercially available. Several devices are at different stages of development particularly in Europe and the US. Clearly, the current momentum experienced worldwide is creating a need for a standardized evaluation framework to assess the benefits and safety of each procedure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objectives of this study were (A) to record the inner prosthesis loading during activities of daily living (ADL), (B) to present a set of variables comparing loading data, and (C) to provide an example of characterisation of two prostheses. The load was measured at 200 Hz using a multi-axial transducer mounted between the residuum and the knee of an individual with unilateral transfemoral amputation fitted with a bone-anchored prosthesis. The load was measured while using two different prostheses including a mechanically (PRO1) and a microprocessor controlled (PRO2) knee during six ADL. The characterisation of prosthesis was achieved using a set of variables split into four categories, including temporal characteristics, maximum loading, loading slopes and impulse. Approximately 360 gait cycles were analysed for each prosthesis. PRO1 showed a cadence improved by 19% and 7%, a maximum force on the long axis reduced by 11% and 19%, as well as an impulse reduced by 32% and 15% during descent of incline and stairs compared to PRO2, respectively. This work confirmed that the proposed apparatus and characterisation can reveal how changes of prosthetic components are translated into inner loading.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Enhancement of bone mineral acquisition during growth may be a useful preventive strategy against osteoporosis. The aim of this study was to explore the lean mass, strength, and bone mineral response to a 10-month, high-impact, strength-building exercise program in 71 premenarcheal girls, aged 9–10 years. Lean body mass, total body (TB), lumbar spine (LS), proximal femur (PF), and femoral neck (FN) bone mineral were measured using the Hologic QDR 2000+ bone densitometer. Strength was assessed using a grip dynamometer and the Cybex isokinetic dynamometer (Cybex II). At baseline, no significant difference in body composition, pubertal development, calcium intake, physical activity, strength, or bone mineral existed between groups. At completion, there were again no differences in height, total body mass, pubertal development, calcium intake, or external physical activity. In contrast, the exercise group gained significantly more lean mass, less body fat content, greater shoulder, knee and grip strength, and greater TB, LS, PF, and FN BMD (exercise: TB 3.5%, LS 4.8%, PF 4.5%, and FN 12.0%) compared with the controls (controls: TB 1.2%, LS 1.2%, PF 1.3%, and FN 1.7%). TB bone mineral content (BMC), LS BMC, PF BMC, FN BMC, LS bone mineral apparent density (BMAD), and FN bone area also increased at a significantly greater rate in the exercise group compared with the controls. In multiple regression analysis, change in lean mass was the primary determinant of TB, FN, PF, and LS BMD accrual. Although a large proportion of bone mineral accrual in the premenarcheal skeleton was related to growth, an osteogenic effect was associated with exercise. These results suggest that high-impact, strength building exercise is beneficial for premenarcheal strength, lean mass gains, and bone mineral acquisition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This symposium will provide hand-on update on the current development of the load sensors measuring the inner prosthetic loading that can strongly contribute the ever increasing demand for evidence-based clinical practice. Surgical implantations of osseointegrated fixations for bone-anchored prosthesis are developing at an unprecedented pace worldwide (e.g., Australia, UK, Sweden, US). This option is becoming accessible to a wide range of individuals with limb loss. With these new developments come new potential challenges and opportunities for all the stakeholders involved in the prosthetic care of these patients. Clearly, there is a need for those stakeholders, particularly those attending the ISPO, to be informed of the current and upcoming international developments in bone-anchored prostheses. The objectives of this symposium will be: • To present an overview of the current growth of the procedures worldwide (e.g., identification of key players, centers of activities, growth trend) with a strong focus on the introduction of the framework to evaluate the availability of the procedure at national level (e.g., number of patients treated, range of the levels of implantation, number of commercial fixations accessible), • To provide first-hand updates on the latest cutting-edge scientific and clinical developments of fixations and rehabilitations programs (e.g., Innovative design of implant, cost-effectiveness, long-terms rehabilitation outcomes for screw-type fixation, current developments in US, comparative analysis for press-fit type of implant, potential moves toward single-stage surgeries).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this thesis was to establish an individualized, patient-specific diagnostic and therapeutic preclinical disease model for bone metastasis research. Tissue engineering of humanized bone within mice allowed the development of a humanized immune system in the host animal. This novel platform makes it possible to analyze the growth of human cancer cells in human bone in the presence of human immune cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Engineered biphasic osteochondral tissues may have utility in cartilage defect repair. As bone-marrow-derived mesenchymal stem/stromal cells (MSC) have the capacity to make both bone-like and cartilage-like tissues, they are an ideal cell population for use in the manufacture of osteochondral tissues. Effective differentiation of MSC to bone-like and cartilage-like tissues requires two unique medium formulations and this presents a challenge both in achieving initial MSC differentiation and in maintaining tissue stability when the unified osteochondral tissue is subsequently cultured in a single medium formulation. In this proof-of-principle study, we used an in-house fabricated microwell platform to manufacture thousands of micropellets formed from 166 MSC each. We then characterized the development of bone-like and cartilage-like tissue formation in the micropellets maintained for 8–14 days in sequential combinations of osteogenic or chondrogenic induction medium. When bone-like or cartilage-like micropellets were induced for only 8 days, they displayed significant phenotypic changes when the osteogenic or chondrogenic induction medium, respectively, was swapped. Based on these data, we developed an extended 14-day protocol for the pre-culture of bone-like and cartilage-like micropellets in their respective induction medium. Unified osteochondral tissues were formed by layering 12,000 osteogenic micropellets and 12,000 chondrogenic micropellets into a biphasic structure and then further culture in chondrogenic induction medium. The assembled tissue was cultured for a further 8 days and characterized via histology. The micropellets had amalgamated into a continuous structure with distinctive bone-like and cartilage-like regions. This proof-of-concept study demonstrates the feasibility of micropellet assembly for the formation of osteochondral-like tissues for possible use in osteochondral defect repair.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This project developed a quantitative method for determining the quality of the surgical alignment of the bone fragments after an ankle fracture. The research examined the feasibility of utilising MRI-based bone models versus the gold standard CT-based bone models in order to reduce the amount of ionising radiation the patient is exposed to. In doing so, the thesis reports that there is potential for MRI to be used instead of CT depending on the scanning parameters used to obtain the medical images, the distance of the implant relative to the joint surface, and the implant material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adaptive phenotypic plasticity, the ability of an organism to change its phenotype to match local environments, is increasingly recognized for its contribution to evolution. However, few empirical studies have explored the molecular basis of plastic traits. The East African cichlid fish Astatoreochromis alluaudi displays adaptive phenotypic plasticity in its pharyngeal jaw apparatus, a structure that is widely seen as an evolutionary key innovation that has contributed to the remarkable diversity of cichlid fishes. It has previously been shown that in response to different diets, the pharyngeal jaws change their size, shape and dentition: hard diets induce an adaptive robust molariform tooth phenotype with short jaws and strong internal bone structures, while soft diets induce a gracile papilliform tooth phenotype with elongated jaws and slender internal bone structures. To gain insight into the molecular underpinnings of these adaptations and enable future investigations of the role that phenotypic plasticity plays during the formation of adaptive radiations, the transcriptomes of the two divergent jaw phenotypes were examined. Our study identified a total of 187 genes whose expression differs in response to hard and soft diets, including immediate early genes, extracellular matrix genes and inflammatory factors. Transcriptome results are interpreted in light of expression of candidate genesmarkers for tooth size and shape, bone cells and mechanically sensitive pathways. This study opens up new avenues of research at new levels of biological organization into the roles of phenotypic plasticity during speciation and radiation of cichlid fishes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Individuals with limb amputation fitted with conventional socket-suspended prostheses often experience socket-related discomfort leading to a significant decrease in quality of life. Bone-anchored prostheses are increasingly acknowledged as viable alternative method of attachment of artificial limb. In this case, the prosthesis is attached directly to the residual skeleton through a percutaneous fixation. To date, a few osseointegration fixations are commercially available. Several devices are at different stages of development particularly in Europe and the US.[1-15] Clearly, surgical procedures are currently blooming worldwide. Indeed, Australia and Queensland in particular have one of the fastest growing populations. Previous studies involving either screw-type implants or press-fit fixations for bone-anchorage have focused on fragmented biomechanics aspects as well as the clinical benefits and safety of the procedure. However, very few publications have synthetized this information and provided an overview of the current developments in bone-anchored prostheses worldwide, let alone in Australia. The purposes of the presentation will be: 1. To provide an overview of the state-of-art developments in bone-anchored prostheses with as strong emphasis on the design of fixations, treatment, benefits, risks as well as future opportunities and challenges, 2. To present the current international developments of procedures for bone-anchored prostheses in terms of numbers of centers, number of cases and typical case-mix, 3. To highlight the current role Australia is playing as a leader worldwide in terms of growing population, broadest range of case-mix, choices of fixations, development of reimbursement schemes, unique clinical outcome registry for evidence-based practice, cutting-edge research, consumer demand and general public interest.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Individuals with limb amputation fitted with conventional socket-suspended prostheses often experience socket-related discomfort leading to a significant decrease in quality of life. Bone-anchored prostheses are increasingly acknowledged as viable alternative method of attachment of artificial limb. In this case, the prosthesis is attached directly to the residual skeleton through a percutaneous fixation. To date, a few osseointegration fixations are commercially available. Several devices are at different stages of development particularly in Europe and the US. [1-15] Clearly, surgical procedures are currently blooming worldwide. Indeed, Australia and Queensland, in particular, have one of the fastest growing populations. Previous studies involving either screw-type implants or press-fit fixations for bone-anchorage have focused on biomechanics aspects as well as the clinical benefits and safety of the procedure. In principle, bone-anchored prostheses should eliminate lifetime expenses associated with sockets and, consequently, potentially alleviate the financial burden of amputation for governmental organizations. Unfortunately, publications focusing on cost-effectiveness are sparse. In fact, only one study published by Haggstrom et al (2012), reported that “despite significantly fewer visits for prosthetic service the annual mean costs for osseointegrated prostheses were comparable with socket-suspended prostheses”. Consequently, governmental organizations such as Queensland Artificial Limb Services (QALS) are facing a number of challenges while adjusting financial assistance schemes that should be fair and equitable to their clients fitted with bone-anchored prostheses. Clearly, more scientific evidence extracted from governmental databases is needed to further consolidate the analyses of financial burden associated with both methods of attachment (i.e., conventional sockets prostheses, bone-anchored prostheses). The purpose of the presentation will be to share the current outcomes of a cost-analysis study lead by QALS. The specific objectives will be: • To outline methodological avenues to assess the cost-effectiveness of bone-anchored prostheses compared to conventional sockets prostheses, • To highlight the potential obstacles and limitations in cost-effectiveness analyses of bone-anchored prostheses, • To present cohort results of a cost-effectiveness (QALY vs cost) including the determination of fair Incremental cost-effectiveness Ratios (ICER) as well as cost-benefit analysis focusing on the comparing costs and key outcome indicators (e.g., QTFA, TUG, 6MWT, activities of daily living) over QALS funding cycles for both methods of attachment.