68 resultados para Beveridge-Nelson decomposition
Resumo:
The function of a protein can be partially determined by the information contained in its amino acid sequence. It can be assumed that proteins with similar amino acid sequences normally have closer functions. Hence analysing the similarity of proteins has become one of the most important areas of protein study. In this work, a layered comparison method is used to analyze the similarity of proteins. It is based on the empirical mode decomposition (EMD) method, and protein sequences are characterized by the intrinsic mode functions (IMFs). The similarity of proteins is studied with a new cross-correlation formula. It seems that the EMD method can be used to detect the functional relationship of two proteins. This kind of similarity method is a complement of traditional sequence similarity approaches which focus on the alignment of amino acids
Resumo:
We review studies of Nelson's (1976) Modified Card Sorting Test (MCST) that have examined the performance of subjects with frontal lobe dysfunction. Six studies investigated the performance of normal controls and patients with frontal lobe dysfunction, whereas four studies compared the performance of frontal and nonfrontal patients. One further study compared the performance of amnesic patients both on the MCST and on the original Wisconsin Card Sorting Test (WCST). Evidence regarding the MCST's differential sensitivity to frontal lobe dysfunction is weak, as is the evidence regarding the equivalence of the MCST and WCST. It is likely that the MCST is an altogether different test from the standard version. In the absence of proper normative data for the MCST, we provide a table of scores derived from the control groups of various studies. Given the paucity of evidence, further research is required before the MCST can be recommended for use as a marker of frontal lobe dysfunction.
Resumo:
Frog protection has become increasingly essential due to the rapid decline of its biodiversity. Therefore, it is valuable to develop new methods for studying this biodiversity. In this paper, a novel feature extraction method is proposed based on perceptual wavelet packet decomposition for classifying frog calls in noisy environments. Pre-processing and syllable segmentation are first applied to the frog call. Then, a spectral peak track is extracted from each syllable if possible. Track duration, dominant frequency and oscillation rate are directly extracted from the track. With k-means clustering algorithm, the calculated dominant frequency of all frog species is clustered into k parts, which produce a frequency scale for wavelet packet decomposition. Based on the adaptive frequency scale, wavelet packet decomposition is applied to the frog calls. Using the wavelet packet decomposition coefficients, a new feature set named perceptual wavelet packet decomposition sub-band cepstral coefficients is extracted. Finally, a k-nearest neighbour (k-NN) classifier is used for the classification. The experiment results show that the proposed features can achieve an average classification accuracy of 97.45% which outperforms syllable features (86.87%) and Mel-frequency cepstral coefficients (MFCCs) feature (90.80%).
Resumo:
Environmental changes have put great pressure on biological systems leading to the rapid decline of biodiversity. To monitor this change and protect biodiversity, animal vocalizations have been widely explored by the aid of deploying acoustic sensors in the field. Consequently, large volumes of acoustic data are collected. However, traditional manual methods that require ecologists to physically visit sites to collect biodiversity data are both costly and time consuming. Therefore it is essential to develop new semi-automated and automated methods to identify species in automated audio recordings. In this study, a novel feature extraction method based on wavelet packet decomposition is proposed for frog call classification. After syllable segmentation, the advertisement call of each frog syllable is represented by a spectral peak track, from which track duration, dominant frequency and oscillation rate are calculated. Then, a k-means clustering algorithm is applied to the dominant frequency, and the centroids of clustering results are used to generate the frequency scale for wavelet packet decomposition (WPD). Next, a new feature set named adaptive frequency scaled wavelet packet decomposition sub-band cepstral coefficients is extracted by performing WPD on the windowed frog calls. Furthermore, the statistics of all feature vectors over each windowed signal are calculated for producing the final feature set. Finally, two well-known classifiers, a k-nearest neighbour classifier and a support vector machine classifier, are used for classification. In our experiments, we use two different datasets from Queensland, Australia (18 frog species from commercial recordings and field recordings of 8 frog species from James Cook University recordings). The weighted classification accuracy with our proposed method is 99.5% and 97.4% for 18 frog species and 8 frog species respectively, which outperforms all other comparable methods.
Resumo:
This paper provides an empirical estimation of energy efficiency and other proximate factors that explain energy intensity in Australia for the period 1978-2009. The analysis is performed by decomposing the changes in energy intensity by means of energy efficiency, fuel mix and structural changes using sectoral and sub-sectoral levels of data. The results show that the driving forces behind the decrease in energy intensity in Australia are efficiency effect and sectoral composition effect, where the former is found to be more prominent than the latter. Moreover, the favourable impact of the composition effect has slowed consistently in recent years. A perfect positive association characterizes the relationship between energy intensity and carbon intensity in Australia. The decomposition results indicate that Australia needs to improve energy efficiency further to reduce energy intensity and carbon emissions. © 2012 Elsevier Ltd.
Resumo:
Changes in energy-related CO2 emissions aggregate intensity, total CO2 emissions and per-capita CO2 emissions in Australia are decomposed by using a Logarithmic Mean Divisia Index (LMDI) method for the period 1978-2010. Results indicate improvements in energy efficiency played a dominant role in the measured 17% reduction in CO2 emissions aggregate intensity in Australia over the period. Structural changes in the economy, such as changes in the relative importance of the services sector vis-à-vis manufacturing, have also played a major role in achieving this outcome. Results also suggest that, without these mitigating factors, income per capita and population effects could well have produced an increase in total emissions of more than 50% higher than actually occurred over the period. Perhaps most starkly, the results indicate that, without these mitigating factors, the growth in CO2 emissions per capita could have been over 150% higher than actually observed. Notwithstanding this, the study suggests that, for Australia to meet its Copenhagen commitment, the relative average per annum effectiveness of these mitigating factors during 2010-2020 probably needs to be almost three times what it was in the 2005-2010 period-a very daunting challenge indeed for Australia's policymakers.
Resumo:
This paper examines the asymmetry of changes in CO
Resumo:
The Australian government has recently pledged a reduction in GHGs emissions of 26–28% below the 2005 level by 2030. How big is the challenge for the country to achieve this target in terms of its present emissions profile, recent historical trends, and the contributions to those trends from key proximate factors contributing to emissions? In this paper, we attempt a quantitative judgement of the challenge by using decomposition analysis. Based on the analysis it appears the announced target will be quite challenging to achieve if the average annual mitigating effects from economic restructuring, energy efficiency improvements and movement towards less emissions-intensive energy sources in evidence over 2002–2013 continued through to 2030; however, if the contribution from these mitigating sources in evidence over 2006–2013 can be sustained, achievement of the target will be much less challenging. The challenge for government then will be to provide a policy framework to ensure the more pronounced beneficial impacts of the mitigating factors evidenced during 2006–2013 can be maintained over the years to 2030.