428 resultados para Bacterial expression


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A major strategic goal in making ethanol from lignocellulosic biomass a cost-competitive liquid transport fuel is to reduce the cost of production of cellulolytic enzymes that hydrolyse lignocellulosic substrates to fermentable sugars. Current production systems for these enzymes, namely microbes, are not economic. One way to substantially reduce production costs is to express cellulolytic enzymes in plants at levels that are high enough to hydrolyse lignocellulosic biomass. Sugar cane fibre (bagasse) is the most promising lignocellulosic feedstock for conversion to ethanol in the tropics and subtropics. Cellulolytic enzyme production in sugar cane will have a substantial impact on the economics of lignocellulosic ethanol production from bagasse. We therefore generated transgenic sugar cane accumulating three cellulolytic enzymes, fungal cellobiohydrolase I (CBH I), CBH II and bacterial endoglucanase (EG), in leaves using the maize PepC promoter as an alternative to maize Ubi1 for controlling transgene expression. Different subcellular targeting signals were shown to have a substantial impact on the accumulation of these enzymes; the CBHs and EG accumulated to higher levels when fused to a vacuolar-sorting determinant than to an endoplasmic reticulum-retention signal, while EG was produced in the largest amounts when fused to a chloroplast-targeting signal. These results are the first demonstration of the expression and accumulation of recombinant CBH I, CBH II and EG in sugar cane and represent a significant first step towards the optimization of cellulolytic enzyme expression in sugar cane for the economic production of lignocellulosic ethanol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Occlusion is a big challenge for facial expression recognition (FER) in real-world situations. Previous FER efforts to address occlusion suffer from loss of appearance features and are largely limited to a few occlusion types and single testing strategy. This paper presents a robust approach for FER in occluded images and addresses these issues. A set of Gabor based templates is extracted from images in the gallery using a Monte Carlo algorithm. These templates are converted into distance features using template matching. The resulting feature vectors are robust to occlusion. Occluded eyes and mouth regions and randomly places occlusion patches are used for testing. Two testing strategies analyze the effects of these occlusions on the overall recognition performance as well as each facial expression. Experimental results on the Cohn-Kanade database confirm the high robustness of our approach and provide useful insights about the effects of occlusion on FER. Performance is also compared with previous approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A number of instructors have recently adopted social network sites (SNSs) for learning. However, the learning design of SNSs often remains at a preliminary level similar to a personal log book because it does not properly include reflective learning elements such as individual reflection and collaboration. This article looks at the reflective learning process and the public writing process as a way of improving the quality of reflective learning on SNSs. It proposes a reflective learning model on SNSs based on two key pedagogical concepts for social networking: individual expression and collaborative connection. It is expected that the model would be helpful for instructors in designing a reflective learning process on SNSs in an effective and flexible way.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nuclear Factor Y (NF-Y) is a trimeric complex that binds to the CCAAT box, a ubiquitous eukaryotic promoter element. The three subunits NF-YA, NF-YB and NF-YC are represented by single genes in yeast and mammals. However, in model plant species (Arabidopsis and rice) multiple genes encode each subunit providing the impetus for the investigation of the NF-Y transcription factor family in wheat. A total of 37 NF-Y and Dr1 genes (10 NF-YA, 11 NF-YB, 14 NF-YC and 2 Dr1) in Triticum aestivum were identified in the global DNA databases by computational analysis in this study. Each of the wheat NF-Y subunit families could be further divided into 4-5 clades based on their conserved core region sequences. Several conserved motifs outside of the NF-Y core regions were also identified by comparison of NF-Y members from wheat, rice and Arabidopsis. Quantitative RT-PCR analysis revealed that some of the wheat NF-Y genes were expressed ubiquitously, while others were expressed in an organ-specific manner. In particular, each TaNF-Y subunit family had members that were expressed predominantly in the endosperm. The expression of nine NF-Y and two Dr1 genes in wheat leaves appeared to be responsive to drought stress. Three of these genes were up-regulated under drought conditions, indicating that these members of the NF-Y and Dr1 families are potentially involved in plant drought adaptation. The combined expression and phylogenetic analyses revealed that members within the same phylogenetic clade generally shared a similar expression profile. Organ-specific expression and differential response to drought indicate a plant-specific biological role for various members of this transcription factor family.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The formation of new blood vessels is a prerequisite for bone healing. CYR61 (CCN1), an extracellular matrix-associated signaling protein, is a potent stimulator of angiogenesis and mesenchymal stem cell expansion and differentiation. A recent study showed that CYR61 is expressed during fracture healing and suggested that CYR61 plays a significant role in cartilage and bone formation. The hypothesis of the present study was that decreased fixation stability, which leads to a delay in healing, would lead to reduced CYR61 protein expression in fracture callus. The aim of the study was to quantitatively analyze CYR61 protein expression, vascularization, and tissue differentiation in the osteotomy gap and relate to the mechanical fixation stability during the course of healing. A mid-shaft osteotomy of the tibia was performed in two groups of sheep and stabilized with either a rigid or semirigid external fixator, each allowing different amounts of interfragmentary movement. The sheep were sacrificed at 2, 3, 6, and 9 weeks postoperatively. The tibiae were tested biomechanically and histological sections from the callus were analyzed immunohistochemically with regard to CYR61 protein expression and vascularization. Expression of CYR61 protein was upregulated at the early phase of fracture healing (2 weeks), decreasing over the healing time. Decreased fixation stability was associated with a reduced upregulation of the CYR61 protein expression and a reduced vascularization at 2 weeks leading to a slower healing. The maximum cartilage callus fraction in both groups was reached at 3 weeks. However, the semirigid fixator group showed a significantly lower CYR61 immunoreactivity in cartilage than the rigid fixator group at this time point. The fraction of cartilage in the semirigid fixator group was not replaced by bone as quickly as in the rigid fixator group leading to an inferior histological and mechanical callus quality at 6 weeks and therefore to a slower healing. The results supply further evidence that CYR61 may serve as an important regulator of bone healing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Angiogenesis, or neovascularization, is a finely balanced process controlled by pro- and anti-angiogenic factors. Vascular endothelial growth factor (VEGF) is a major pro-angiogenic factor, whereas pigment epithelial-derived factor (PEDF) is the most potent natural angiogenesis inhibitor. In this study, the regulatory role of bone marrow stromal cells (BMSCs) during angiogenesis was assessed by the endothelial differentiation potential, VEGF/PEDF production and responses to pro-angiogenic and hypoxic conditions. The in vivo regulation of blood vessel formation by BMSCs was also explored in a SCID mouse model. Results showed that PEDF was expressed more prominently in BMSCs compared to VEGF. This contrasted with human umbilical vein endothelial cells (HUVECs) where the expression of VEGF was higher than that of PEDF. The ratio of VEGF/PEDF gene expression in BMSCs increased when VEGF concentration reached 40 ng/ml in the culture medium, but decreased at 80 ng/ml. Under CoCl2- induced hypoxic conditions, the VEGF/PEDF ratio of BMSCs increased significantly in both normal and angiogenic culture media. There was no expression of endothelial cell markers in BMSCs cultured in either pro-angiogenic or hypoxia culture conditions when compared with HUVECs. The in vivo study showed that VEGF/PEDF expression closely correlated with the degree of neovascularization, and that hypoxia significantly induced pro-angiogenic activity in BMSCs. These results indicate that, rather than being progenitors of endothelial cells, BMSCs play an important role in regulating the neovascularization process, and that the ratio of VEGF and PEDF may, in effect, be an indicator of the pro- or antiangiogenic activities of BMSCs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The molecular mechanism between atherosclerosis formation and periodontal pathogens is not clear although positive correlation between periodontal infections and cardiovascular diseases has been reported. Objective: To determine if atherosclerosis related genes were affected in foam cells during and after its formation by P. gingivalis lipopolysaccharide (LPS) stimulation. Methods: Macrophages from human THP-1 monocytes were treated with oxidized low density lipoprotein (oxLDL) to induce the formation of foam cells. P. gingivalis LPS was added to cultures of either oxLDL-induced macrophages or foam cells. The expression of atherosclerosis related genes was assayed by quantitative real time PCR and the protein production of granulocyte-macrophage colony-stimulating factor(GM-CSF), monocyte chemotactic protein-1 (MCP-1), IL-1β, IL-10 and IL-12 was determined by ELISA. Nuclear translocation of NF-κB P65 was detected by immunocytochemistry and western blot was used to evaluate IKB-α degradation to confirm the NF-κB pathway activation. Results: P. gingivalis LPS stimulated atherosclerosis related gene expression in foam cells and increased oxLDL induced expression of chemokines, adhesion molecules, growth factors, apoptotic genes, and nuclear receptors in macrophages. Transcription of the pro-inflammatory cytokines IL-1β and IL-12 was elevated in response to LPS in both macrophages and foam cells, whereas the anti-inflammatory cytokine IL-10 was not affected. Increased NF-κB pathway activation was also observed in LPS and oxLDL co-stimulated macrophages. Conclusion: P. gingivalis LPS appears to be an important factor in the development of atherosclerosis by stimulation of atherosclerosis related gene expression in both macrophages and foam cells via activation of the NF-κB pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dental pulp cells (DPCs) have shown promising potential in dental tissue repair and regeneration. However, during in vitro culture, these cells undergo replicative senescence and result in significant alteration in cell proliferation and differentiation. Recently, the transcription factors of Oct-4, Sox2, c-Myc, and Klf4 have been reported to play a regulatory role in the stem cell self-renewal process, namely cell reprogramming. Therefore, it is interesting to know whether the replicative senescence during the culture of dental pulp cells is related to the diminishing of the expression of these transcription factors. In this study, we investigated the expression of the reprogramming markers Oct-4, Sox2, and c-Myc in the in vitro explant cultured dental pulp tissues and explant cultured dental pulp cells (DPCs) at various passages by immunofluorescence staining and real-time polymerase chain reaction analysis. Our results demonstrated that Oct-4, Sox2, and c-Myc translocated from nucleus in the first 2 passages to cytoplasm after the third passage in explant cultured DPCs. The mRNA expression of Oct-4, Sox2, and c-Myc elevated significantly over the first 2 passages, peaked at second passage (P < .05), and then decreased along the number of passages afterwards (P < .05). For the first time we demonstrated that the expression of reprogramming markers Oct-4, Sox2, and c-Myc was detectable in the early passaged DPCs, and the sequential loss of these markers in the nucleus during DPC cultures might be related to the cell fate of dental pulp derived cells during the long-term in vitro cultivation under current culture conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Phylogeographic reconstruction of some bacterial populations is hindered by low diversity coupled with high levels of lateral gene transfer. A comparison of recombination levels and diversity at seven housekeeping genes for eleven bacterial species, most of which are commonly cited as having high levels of lateral gene transfer shows that the relative contributions of homologous recombination versus mutation for Burkholderia pseudomallei is over two times higher than for Streptococcus pneumoniae and is thus the highest value yet reported in bacteria. Despite the potential for homologous recombination to increase diversity, B. pseudomallei exhibits a relative lack of diversity at these loci. In these situations, whole genome genotyping of orthologous shared single nucleotide polymorphism loci, discovered using next generation sequencing technologies, can provide very large data sets capable of estimating core phylogenetic relationships. We compared and searched 43 whole genome sequences of B. pseudomallei and its closest relatives for single nucleotide polymorphisms in orthologous shared regions to use in phylogenetic reconstruction. Results Bayesian phylogenetic analyses of >14,000 single nucleotide polymorphisms yielded completely resolved trees for these 43 strains with high levels of statistical support. These results enable a better understanding of a separate analysis of population differentiation among >1,700 B. pseudomallei isolates as defined by sequence data from seven housekeeping genes. We analyzed this larger data set for population structure and allele sharing that can be attributed to lateral gene transfer. Our results suggest that despite an almost panmictic population, we can detect two distinct populations of B. pseudomallei that conform to biogeographic patterns found in many plant and animal species. That is, separation along Wallace's Line, a biogeographic boundary between Southeast Asia and Australia. Conclusion We describe an Australian origin for B. pseudomallei, characterized by a single introduction event into Southeast Asia during a recent glacial period, and variable levels of lateral gene transfer within populations. These patterns provide insights into mechanisms of genetic diversification in B. pseudomallei and its closest relatives, and provide a framework for integrating the traditionally separate fields of population genetics and phylogenetics for other bacterial species with high levels of lateral gene transfer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Very few articles have been written about the expression of kallikreins (KLK4 and KLK7) in oral cancers. Therefore, the purpose of this study was to examine and report on their prognostic potential. Methods Eighty archival blocks of primary oral cancers were sectioned and stained for KLK4 and KLK7 by immunohistochemistry. The percentage and the intensity of malignant keratinocyte staining were correlated with patient survival using Cox regression analysis. Results Both kallikreins were expressed strongly in the majority of tumor cells in 68 of 80 cases: these were mostly moderately or poorly differentiated neoplasms. Staining was particularly intense at the infiltrating front. Patients with intense staining had significantly shorter overall survival (p < .05). Conclusion This is the first observation on the patient survival influenced by kallikrein expression in oral carcinoma. The findings are consistent with those for carcinomas at other sites, in particular the prostate and ovary. KLK4 and/or KLK7 immunohistochemistry seems to have diagnostic and prognostic potential in this disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The aim of this study is to seek an association between markers of metastatic potential, drug resistance-related protein and monocarboxylate transporters in prostate cancer (CaP). Methods: We evaluated the expression of invasive markers (CD147, CD44v3-10), drug-resistance protein (MDR1) and monocarboxylate transporters (MCT1 and MCT4) in CaP metastatic cell lines and CaP tissue microarrays (n=140) by immunostaining. The co-expression of CD147 and CD44v3-10 with that of MDR1, MCT1 and MCT4 in CaP cell lines was evaluated using confocal microscopy. The relationship between the expression of CD147 and CD44v3-10 and the sensitivity (IC50) to docetaxel in CaP cell lines was assessed using MTT assay. The relationship between expression of CD44v3-10, MDR1 and MCT4 and various clinicopathological CaP progression parameters was examined. Results: CD147 and CD44v3-10 were co-expressed with MDR1, MCT1 and MCT4 in primary and metastatic CaP cells. Both CD147 and CD44v3-10 expression levels were inversely related to docetaxel sensitivity (IC50) in metastatic CaP cell lines. Overexpression of CD44v3-10, MDR1 and MCT4 was found in most primary CaP tissues, and was significantly associated with CaP progression. Conclusions: Our results suggest that the overexpression of CD147, CD44v3-10, MDR1 and MCT4 is associated with CaP progression. Expression of both CD147 and CD44v3-10 is correlated with drug resistance during CaP metastasis and could be a useful potential therapeutic target in advanced disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PSA-RP2 is a variant transcript expressed from the PSA gene that is conserved in gorillas, chimpanzees and humans suggesting a particular relevance for this transcript in these primates. We demonstrated by qRT-PCR that PSA-RP2 is upregulated in prostate cancer compared with benign prostatic hyperplasia tissues. The PSA-RP2 protein was not detected in seminal fluid and was cytoplasmically localised but not secreted from LNCaP or transfected PC3 prostate cells, despite secretion from transfected Cos-7 and HEK293 kidney cell lines. PSA-RP2-transfected PC3 cells showed slightly decreased proliferation and increased migration towards PC3-conditioned medium that could suggest a functional role in prostate cancer.