443 resultados para Agar diffusion method
Resumo:
A FitzHugh-Nagumo monodomain model has been used to describe the propagation of the electrical potential in heterogeneous cardiac tissue. In this paper, we consider a two-dimensional fractional FitzHugh-Nagumo monodomain model on an irregular domain. The model consists of a coupled Riesz space fractional nonlinear reaction-diffusion model and an ordinary differential equation, describing the ionic fluxes as a function of the membrane potential. Secondly, we use a decoupling technique and focus on solving the Riesz space fractional nonlinear reaction-diffusion model. A novel spatially second-order accurate semi-implicit alternating direction method (SIADM) for this model on an approximate irregular domain is proposed. Thirdly, stability and convergence of the SIADM are proved. Finally, some numerical examples are given to support our theoretical analysis and these numerical techniques are employed to simulate a two-dimensional fractional Fitzhugh-Nagumo model on both an approximate circular and an approximate irregular domain.
Resumo:
The fractional Fokker-Planck equation is an important physical model for simulating anomalous diffusions with external forces. Because of the non-local property of the fractional derivative an interesting problem is to explore high accuracy numerical methods for fractional differential equations. In this paper, a space-time spectral method is presented for the numerical solution of the time fractional Fokker-Planck initial-boundary value problem. The proposed method employs the Jacobi polynomials for the temporal discretization and Fourier-like basis functions for the spatial discretization. Due to the diagonalizable trait of the Fourier-like basis functions, this leads to a reduced representation of the inner product in the Galerkin analysis. We prove that the time fractional Fokker-Planck equation attains the same approximation order as the time fractional diffusion equation developed in [23] by using the present method. That indicates an exponential decay may be achieved if the exact solution is sufficiently smooth. Finally, some numerical results are given to demonstrate the high order accuracy and efficiency of the new numerical scheme. The results show that the errors of the numerical solutions obtained by the space-time spectral method decay exponentially.
Resumo:
A two-dimensional variable-order fractional nonlinear reaction-diffusion model is considered. A second-order spatial accurate semi-implicit alternating direction method for a two-dimensional variable-order fractional nonlinear reaction-diffusion model is proposed. Stability and convergence of the semi-implicit alternating direct method are established. Finally, some numerical examples are given to support our theoretical analysis. These numerical techniques can be used to simulate a two-dimensional variable order fractional FitzHugh-Nagumo model in a rectangular domain. This type of model can be used to describe how electrical currents flow through the heart, controlling its contractions, and are used to ascertain the effects of certain drugs designed to treat arrhythmia.
Resumo:
The efficient computation of matrix function vector products has become an important area of research in recent times, driven in particular by two important applications: the numerical solution of fractional partial differential equations and the integration of large systems of ordinary differential equations. In this work we consider a problem that combines these two applications, in the form of a numerical solution algorithm for fractional reaction diffusion equations that after spatial discretisation, is advanced in time using the exponential Euler method. We focus on the efficient implementation of the algorithm on Graphics Processing Units (GPU), as we wish to make use of the increased computational power available with this hardware. We compute the matrix function vector products using the contour integration method in [N. Hale, N. Higham, and L. Trefethen. Computing Aα, log(A), and related matrix functions by contour integrals. SIAM J. Numer. Anal., 46(5):2505–2523, 2008]. Multiple levels of preconditioning are applied to reduce the GPU memory footprint and to further accelerate convergence. We also derive an error bound for the convergence of the contour integral method that allows us to pre-determine the appropriate number of quadrature points. Results are presented that demonstrate the effectiveness of the method for large two-dimensional problems, showing a speedup of more than an order of magnitude compared to a CPU-only implementation.
Resumo:
Reliable quantitative analysis of white matter connectivity in the brain is an open problem in neuroimaging, with common solutions requiring tools for fiber tracking, tractography segmentation and estimation of intersubject correspondence. This paper proposes a novel, template matching approach to the problem. In the proposed method, a deformable fiber-bundle model is aligned directly with the subject tensor field, skipping the fiber tracking step. Furthermore, the use of a common template eliminates the need for tractography segmentation and defines intersubject shape correspondence. The method is validated using phantom DTI data and applications are presented, including automatic fiber-bundle reconstruction and tract-based morphometry. © 2009 Elsevier Inc. All rights reserved.
Resumo:
Cortical connectivity is associated with cognitive and behavioral traits that are thought to vary between sexes. Using high-angular resolution diffusion imaging at 4 Tesla, we scanned 234 young adult twins and siblings (mean age: 23.4 2.0 SD years) with 94 diffusion-encoding directions. We applied a novel Hough transform method to extract fiber tracts throughout the entire brain, based on fields of constant solid angle orientation distribution functions (ODFs). Cortical surfaces were generated from each subject's 3D T1-weighted structural MRI scan, and tracts were aligned to the anatomy. Network analysis revealed the proportions of fibers interconnecting 5 key subregions of the frontal cortex, including connections between hemispheres. We found significant sex differences (147 women/87 men) in the proportions of fibers connecting contralateral superior frontal cortices. Interhemispheric connectivity was greater in women, in line with long-standing theories of hemispheric specialization. These findings may be relevant for ongoing studies of the human connectome.
Resumo:
To understand factors that affect brain connectivity and integrity, it is beneficial to automatically cluster white matter (WM) fibers into anatomically recognizable tracts. Whole brain tractography, based on diffusion-weighted MRI, generates vast sets of fibers throughout the brain; clustering them into consistent and recognizable bundles can be difficult as there are wide individual variations in the trajectory and shape of WM pathways. Here we introduce a novel automated tract clustering algorithm based on label fusion - a concept from traditional intensity-based segmentation. Streamline tractography generates many incorrect fibers, so our top-down approach extracts tracts consistent with known anatomy, by mapping multiple hand-labeled atlases into a new dataset. We fuse clustering results from different atlases, using a mean distance fusion scheme. We reliably extracted the major tracts from 105-gradient high angular resolution diffusion images (HARDI) of 198 young normal twins. To compute population statistics, we use a pointwise correspondence method to match, compare, and average WM tracts across subjects. We illustrate our method in a genetic study of white matter tract heritability in twins.
Resumo:
Background: Magnetic resonance diffusion tensor imaging (DTI) shows promise in the early detection of microstructural pathophysiological changes in the brain. Objectives: To measure microstructural differences in the brains of participants with amnestic mild cognitive impairment (MCI) compared with an age-matched control group using an optimised DTI technique with fully automated image analysis tools and to investigate the correlation between diffusivity measurements and neuropsychological performance scores across groups. Methods: 34 participants (17 participants with MCI, 17 healthy elderly adults) underwent magnetic resonance imaging (MRI)-based DTI. To control for the effects of anatomical variation, diffusion images of all participants were registered to standard anatomical space. Significant statistical differences in diffusivity measurements between the two groups were determined on a pixel-by-pixel basis using gaussian random field theory. Results: Significantly raised mean diffusivity measurements (p<0.001) were observed in the left and right entorhinal cortices (BA28), posterior occipital-parietal cortex (BA18 and BA19), right parietal supramarginal gyrus (BA40) and right frontal precentral gyri (BA4 and BA6) in participants with MCI. With respect to fractional anisotropy, participants with MCI had significantly reduced measurements (p<0.001) in the limbic parahippocampal subgyral white matter, right thalamus and left posterior cingulate. Pearson's correlation coefficients calculated across all participants showed significant correlations between neuropsychological assessment scores and regional measurements of mean diffusivity and fractional anisotropy. Conclusions: DTI-based diffusivity measures may offer a sensitive method of detecting subtle microstructural brain changes associated with preclinical Alzheimer's disease.
Resumo:
There is a major effort in medical imaging to develop algorithms to extract information from DTI and HARDI, which provide detailed information on brain integrity and connectivity. As the images have recently advanced to provide extraordinarily high angular resolution and spatial detail, including an entire manifold of information at each point in the 3D images, there has been no readily available means to view the results. This impedes developments in HARDI research, which need some method to check the plausibility and validity of image processing operations on HARDI data or to appreciate data features or invariants that might serve as a basis for new directions in image segmentation, registration, and statistics. We present a set of tools to provide interactive display of HARDI data, including both a local rendering application and an off-screen renderer that works with a web-based viewer. Visualizations are presented after registration and averaging of HARDI data from 90 human subjects, revealing important details for which there would be no direct way to appreciate using conventional display of scalar images.
Resumo:
Heritability of brain anatomical connectivity has been studied with diffusion-weighted imaging (DWI) mainly by modeling each voxel's diffusion pattern as a tensor (e.g., to compute fractional anisotropy), but this method cannot accurately represent the many crossing connections present in the brain. We hypothesized that different brain networks (i.e., their component fibers) might have different heritability and we investigated brain connectivity using High Angular Resolution Diffusion Imaging (HARDI) in a cohort of twins comprising 328 subjects that included 70 pairs of monozygotic and 91 pairs of dizygotic twins. Water diffusion was modeled in each voxel with a Fiber Orientation Distribution (FOD) function to study heritability for multiple fiber orientations in each voxel. Precision was estimated in a test-retest experiment on a sub-cohort of 39 subjects. This was taken into account when computing heritability of FOD peaks using an ACE model on the monozygotic and dizygotic twins. Our results confirmed the overall heritability of the major white matter tracts but also identified differences in heritability between connectivity networks. Inter-hemispheric connections tended to be more heritable than intra-hemispheric and cortico-spinal connections. The highly heritable tracts were found to connect particular cortical regions, such as medial frontal cortices, postcentral, paracentral gyri, and the right hippocampus.
Resumo:
As connectivity analyses become more popular, claims are often made about how the brain's anatomical networks depend on age, sex, or disease. It is unclear how results depend on tractography methods used to compute fiber networks. We applied 11 tractography methods to high angular resolution diffusion images of the brain (4-Tesla 105-gradient HARDI) from 536 healthy young adults. We parcellated 70 cortical regions, yielding 70×70 connectivity matrices, encoding fiber density. We computed popular graph theory metrics, including network efficiency, and characteristic path lengths. Both metrics were robust to the number of spherical harmonics used to model diffusion (4th-8th order). Age effects were detected only for networks computed with the probabilistic Hough transform method, which excludes smaller fibers. Sex and total brain volume affected networks measured with deterministic, tensor-based fiber tracking but not with the Hough method. Each tractography method includes different fibers, which affects inferences made about the reconstructed networks.
Resumo:
The numerical solution of fractional partial differential equations poses significant computational challenges in regard to efficiency as a result of the spatial nonlocality of the fractional differential operators. The dense coefficient matrices that arise from spatial discretisation of these operators mean that even one-dimensional problems can be difficult to solve using standard methods on grids comprising thousands of nodes or more. In this work we address this issue of efficiency for one-dimensional, nonlinear space-fractional reaction–diffusion equations with fractional Laplacian operators. We apply variable-order, variable-stepsize backward differentiation formulas in a Jacobian-free Newton–Krylov framework to advance the solution in time. A key advantage of this approach is the elimination of any requirement to form the dense matrix representation of the fractional Laplacian operator. We show how a banded approximation to this matrix, which can be formed and factorised efficiently, can be used as part of an effective preconditioner that accelerates convergence of the Krylov subspace iterative solver. Our approach also captures the full contribution from the nonlinear reaction term in the preconditioner, which is crucial for problems that exhibit stiff reactions. Numerical examples are presented to illustrate the overall effectiveness of the solver.
Resumo:
Purpose A modification of the existing PVA-FX hydrogel has been made to investigate the use of a functionalised polymer in a Fricke gel dosimetry system to decrease Fe3+ diffusion. Methods The chelating agent, xylenol orange, was chem. bonded to the gelling agent, polyvinyl alc. (PVA) to create xylenol orange functionalised PVA (XO-PVA). A gel was created from the XO-PVA (20% w/v) with ferrous sulfate (0.4 mM) and sulfuric acid (50 mM). Results This resulted in an optical d. dose sensitivity of 0.014 Gy-1, an auto-oxidn. rate of 0.0005 h-1, and a diffusion rate of 0.129 mm2 h-1; an 8% redn. compared to the original PVA-FX gel, which in practical terms adds approx. 1 h to the time span between irradn. and accurate read-out. Conclusions Because this initial method of chem. bonding xylenol orange to polyvinyl alc. has inherently low conversion, the improvement on existing gel systems is minimal when compared to the drawbacks. More efficient methods of functionalising polyvinyl alc. with xylenol orange must be developed for this system to gain clin. relevance.
Resumo:
Many processes during embryonic development involve transport and reaction of molecules, or transport and proliferation of cells, within growing tissues. Mathematical models of such processes usually take the form of a reaction-diffusion partial differential equation (PDE) on a growing domain. Previous analyses of such models have mainly involved solving the PDEs numerically. Here, we present a framework for calculating the exact solution of a linear reaction-diffusion PDE on a growing domain. We derive an exact solution for a general class of one-dimensional linear reaction—diffusion process on 0
Resumo:
Diffusion in a composite slab consisting of a large number of layers provides an ideal prototype problem for developing and analysing two-scale modelling approaches for heterogeneous media. Numerous analytical techniques have been proposed for solving the transient diffusion equation in a one-dimensional composite slab consisting of an arbitrary number of layers. Most of these approaches, however, require the solution of a complex transcendental equation arising from a matrix determinant for the eigenvalues that is difficult to solve numerically for a large number of layers. To overcome this issue, in this paper, we present a semi-analytical method based on the Laplace transform and an orthogonal eigenfunction expansion. The proposed approach uses eigenvalues local to each layer that can be obtained either explicitly, or by solving simple transcendental equations. The semi-analytical solution is applicable to both perfect and imperfect contact at the interfaces between adjacent layers and either Dirichlet, Neumann or Robin boundary conditions at the ends of the slab. The solution approach is verified for several test cases and is shown to work well for a large number of layers. The work is concluded with an application to macroscopic modelling where the solution of a fine-scale multilayered medium consisting of two hundred layers is compared against an “up-scaled” variant of the same problem involving only ten layers.