112 resultados para AROMATIC POLYIMIDE


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The structures of the open chain amide carboxylic acid rac-cis-[2-(2-methoxyphenyl)carbamoyl]cyclohexane-1-carboxylic acid, C15H19NO4, (I) and the cyclic imides rac-cis-2-(4-methoxyphenyl)-3a,4,5,6,7,7-hexahydroisoindole-1,3-dione,C15H17NO3, (II), chiral cis-2-(3-carboxyphenyl)-3a,4,5,6,7,7a-hexahydroisoindole-1,3-dione, C15H15NO4,(III) and rac-cis-2-(4-carboxyphenyl)- 3a,4,5,6,7,7a-hexahydroisoindole-1,3-dione monohydrate, C15H15NO4. H2O) (IV), are reported. In the amide acid (I), the phenylcarbamoyl group is essentially planar [maximum deviation from the least-squares plane = 0.060(1)Ang. for the amide O atom], the molecules form discrete centrosymmetric dimers through intermolecular cyclic carboxy-carboxy O-H...O hydrogen-bonding interactions [graph set notation R2/2(8)]. The cyclic imides (II)--(IV) are conformationally similar, with comparable phenyl ring rotations about the imide N-C(aromatic) bond [dihedral angles between the benzene and isoindole rings = 51.55(7)deg. in (II), 59.22(12)deg. in (III) and 51.99(14)deg. in (IV). Unlike (II) in which only weak intermolecular C-H...O(imide) hydrogen bonding is present, the crystal packing of imides (III) and (IV) shows strong intermolecular carboxylic acid O-H...O hydrogen-bonding associations. With (III), these involve imide O-atom acceptors, giving one-dimensional zigzag chains [graph set C(9)], while with the monohydrate (IV), the hydrogen bond involves the partially disordered water molecule which also bridges molecules through both imide and carboxyl O-atom acceptors in a cyclic R4/4(12) association, giving a two-dimensional sheet structure. The structures reported here expand the structural data base for compounds of this series formed from the facile reaction of cis-cyclohexane-1,2-dicarboxylic anhydride with substituted anilines, in which there is a much larger incidence of cyclic imides compared to amide carboxylic acids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is very difficult to selectively oxidise stable compounds such as toluene and xylenes to useful chemicals with molecular oxygen (O 2) under moderate conditions. To achieve high conversion and less over-oxidised products, a new class of photocatalysts, metal hydroxide nanoparticles grafted with alcohols, is devised. They can efficiently oxidise alkyl aromatic compounds with O 2 using visible or ultraviolet light or even sunlight to generate the corresponding aldehydes, alcohols and acids at ambient temperatures and give very little over-oxidation. For example toluene can be oxidised with a 23% conversion after a 48-hour exposure to sunlight with 85% of the product being benzaldehyde, and only a trace of CO 2.The surface complexes grafted onto metal hydroxides can absorb light, generating free radicals on the surface, which then initiate aerobic oxidation of the stable alkyl aromatic molecules with high product selectivity. This mechanism is distinctly different from those of any known catalysts. The use of the new photocatalysts as a controlled means to generate surface radicals through light excitation allows us to drive the production of fine organic chemicals at ambient temperatures with sunlight. The process with the new photocatalysts is especially valuable for temperature-sensitive syntheses and a greener process than many conventional thermal reactions. © 2012 The Royal Society of Chemistry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rapid urbanisation and resulting continuous increase in traffic has been recognised as key factors in the contribution of increased pollutant loads to urban stormwater and in turn to receiving waters. Urbanisation primarily increases anthropogenic activities and the percentage of impervious surfaces in urban areas. These processes are collectively responsible for urban stormwater pollution. In this regard, urban traffic and land use related activities have been recognised as the primary pollutant sources. This is primarily due to the generation of a range of key pollutants such as solids, heavy metals and PAHs. Appropriate treatment system design is the most viable approach to mitigate stormwater pollution. However, limited understanding of the pollutant process and transport pathways constrains effective treatment design. This highlights necessity for the detailed understanding of traffic and other land use related pollutants processes and pathways in relation to urban stormwater pollution. This study has created new knowledge in relation to pollutant processes and transport pathways encompassing atmospheric pollutants, atmospheric deposition and build-up on ground surfaces of traffic generated key pollutants. The research study was primarily based on in-depth experimental investigations. This thesis describes the extensive knowledge created relating to the processes of atmospheric pollutant build-up, atmospheric deposition and road surface build-up and establishing their relationships as a chain of processes. The analysis of atmospheric deposition revealed that both traffic and land use related sources contribute total suspended particulate matter (TSP) to the atmosphere. Traffic sources become dominant during weekdays whereas land use related sources become dominant during weekends due to the reduction in traffic sources. The analysis further concluded that atmospheric TSP, polycyclic aromatic hydrocarbons (PAHs) and heavy metals (HMs) concentrations are highly influenced by total average daily heavy duty traffic, traffic congestion and the fraction of commercial and industrial land uses. A set of mathematical equation were developed to predict TSP, PAHs and HMs concentrations in the atmosphere based on the influential traffic and land use related parameters. Dry deposition samples were collected for different antecedent dry days and wet deposition samples were collected immediately after rainfall events. The dry deposition was found to increase with the antecedent dry days and consisted of relatively coarser particles (greater than 1.4 ìm) when compared to wet deposition. The wet deposition showed a strong affinity to rainfall depth, but was not related to the antecedent dry period. It was also found that smaller size particles (less than 1.4 ìm) travel much longer distances from the source and deposit mainly with the wet deposition. Pollutants in wet deposition are less sensitive to the source characteristics compared to dry deposition. Atmospheric deposition of HMs is not directly influenced by land use but rather by proximity to high emission sources such as highways. Therefore, it is important to consider atmospheric deposition as a key pollutant source to urban stormwater in the vicinity of these types of sources. Build-up was analysed for five different particle size fractions, namely, <1 ìm, 1-75 ìm, 75-150 ìm, 150-300 ìm and >300 ìm for solids, PAHs and HMs. The outcomes of the study indicated that PAHs and HMs in the <75 ìm size fraction are generated mainly by traffic related activities whereas the > 150 ìm size fraction is generated by both traffic and land use related sources. Atmospheric deposition is an important source for HMs build-up on roads, whereas the contribution of PAHs from atmospheric sources is limited. A comprehensive approach was developed to predict traffic and other land use related pollutants in urban stormwater based on traffic and other land use characteristics. This approach primarily included the development of a set of mathematical equations to predict traffic generated pollutants by linking traffic and land use characteristics to stormwater quality through mathematical modelling. The outcomes of this research will contribute to the design of appropriate treatment systems to safeguard urban receiving water quality for future traffic growth scenarios. The „real world. application of knowledge generated was demonstrated through mathematical modelling of solids in urban stormwater, accounting for the variability in traffic and land use characteristics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The crystal structures of the 1:1 proton-transfer compounds of isonipecotamide (piperidine-4-carboxamide) with the monocyclic heteroaromatic carboxylic acids, isonicotinic acid, picolinic acid, dipicolinic acid and pyrazine-2,3-dicarboxylic acid have been determined at 200 K and their hydrogen-bonding patterns examined. The compounds are respectively anhydrous 4-carbamoylpiperidinium pyridine-4-carboxylate (1), the partial hydrate 4-carbamoylpiperidinium pyridine-2-carboxylate 0.25 water (2), the solvate 4-carbamoylpiperidinium 6-carboxypyridine-2-carboxylate methanol monosolvate (3), and anhydrous 4-carbamoylpiperidinium 3-carboxypyrazine-2-carboxylate (4). In compounds 1 and 3, hydrogen-bonding interactions give two-dimensional sheet structures which feature enlarged cyclic ring systems, while in compounds 2 and 4, three-dimensional structures are found. The previously described cyclic R2/2(8) hydrogen-bonded amide-amide dimer is present in 2 and 3. The hydrogen-bonding in 2 involves the partial-occupancy water molecule while the structure of 4 is based on inter-linked homomolecular hydrogen-bonded cation-cation and anion-anion associated chains comprising head-to-tail interactions. This work further demonstrates the utility of the isonipecotamide cation in the generation of chemically stable hydrogen-bonded systems, particularly with aromatic carboxylate anions, providing crystalline solids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the title compound, C18H19Cl3O2, which is the 4-ethoxyphenyl analogue of the insecticidally active 4-methoxyphenyl compound methoxychlor, the dihedral angle between the two benzene rings is 60.38(13)deg. An intramolecular aromatic C-H...Cl interaction is present.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the asymmetric unit of the title co-crystal, C12H14N4O2S·C7H5NO4, the sulfamethazine and 2-nitrobenzoic acid molecules form a heterodimer through intermolecular amide-carboxylic acid N-HO and carboxylic acid-pyrimidine O-HN hydrogen-bond pairs, giving a cyclic motif [graph set R22(8)]. The dihedral angle between the two aromatic ring systems in the sulfamethazine molecule is 88.96 (18)° and the nitro group of the acid is 50% rotationally disordered. Secondary aniline N-HOsulfone hydrogen-bonding associations give a two-dimensional structure lying parallel to the ab plane.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis is an innovative study for organic synthesis using supported gold nanoparticles as photocatalysts under visible light irradiation. It especially examines a novel green process for efficient hydroamination of alkynes with amines. The investigation of other traditional reduction and oxidation reactions also adds significantly to the knowledge of gold nanoparticles and titania nanofibres as photocatalysts for organic synthesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new method for the direct aryl iodination of isoindolines and isoindoline nitroxides which utilizes periodic acid and potassium iodide in sulfuric acid is presented. Di-iodo functionalized tetramethyl and tetraethyl isoindolines and a di-iodo tetramethyl isoindoline nitroxide were prepared in high yield (70-82%). The analogous mono-iodo species were afforded in modest yield (34-48%). Iodinated nitrones were also obtained from a tetraethyl isoindoline nitroxide.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Large scale screening of libraries consisting of natural and small molecules led to the identification of many small molecule inhibitors repressing Wnt/β-Catenin signaling. However, targeted synthesis of novel Wnt pathway inhibitors has been rarely described. We developed a modular and expedient way to create the aromatic ring system with an aliphatic ring in between. Our synthesis opens up the possibility, in principle, to substitute all positions at the ring system with any desired substituent. Here, we tested five different haloquinone analogs carrying methoxy- and hydroxy-groups at different positions. Bona fide Wnt activity assays in cell culture and in Xenopus embryos revealed that two of these compounds act as potent inhibitors of aberrant activated Wnt/β-Catenin signaling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aromatic radicals form in a variety of reacting gas-phase systems, where their molecular weight growth reactions with unsaturated hydrocarbons are of considerable importance. We have investigated the ion-molecule reaction of the aromatic distonic N-methyl-pyridinium-4-yl (NMP) radical cation with 2-butyne (CH3C CCH3) using ion trap mass spectrometry. Comparison is made to high-level ab initio energy surfaces for the reaction of NMP and for the neutral phenyl radical system. The NMP radical cation reacts rapidly with 2-butyne at ambient temperature, due to the apparent absence of any barrier. The activated vinyl radical adduct predominantly dissociates via loss of a H atom, with lesser amounts of CH3 loss. High-resolution Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry allows us to identify small quantities of the collisionally deactivated reaction adduct. Statistical reaction rate theory calculations (master equation/RRKM theory) on the NMP + 2-butyne system support our experimental findings, and indicate a mechanism that predominantly involves an allylic resonance-stabilized radical formed via H atom shuttling between the aromatic ring and the C-4 side-chain, followed by cyclization and/or low-energy H atom beta-scission reactions. A similar mechanism is demonstrated for the neutral phenyl radical (Ph center dot)+2-butyne reaction, forming products that include 3-methylindene. The collisionally deactivated reaction adduct is predicted to be quenched in the form of a resonance-stabilized methylphenylallyl radical. Experiments using a 2,5-dichloro substituted methyl-pyridiniumyl radical cation revealed that in this case CH3 loss from the 2-butyne adduct is favoured over H atom loss, verifying the key role of ortho H atoms, and the shuttling mechanism, in the reactions of aromatic radicals with alkynes. As well as being useful phenyl radical analogues, pyridiniumyl radical cations may form in the ionosphere of Titan, where they could undergo rapid molecular weight growth reactions to yield polycyclic aromatic nitrogen hydrocarbons (PANHs).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The phenylperoxyl radical has long been accepted as a critical intermediate in the oxidation of benzene and an archetype for arylperoxyl radicals in combustion and atmospheric chemistry. Despite being central to many contemporary mechanisms underpinning these chemistries, reports of the direct detection or isolation of phenylperoxyl radicals are rare and there is little experimental evidence connecting this intermediate with expected product channels. We have prepared and isolated two charge-tagged phenyl radical models in the gas phase [i.e., 4-(N,N,N-trimethylammonium) phenyl radical cation and 4-carboxylatophenyl radical anion] and observed their reactions with dioxygen by ion-trap mass spectrometry. Measured reaction rates show good agreement with prior reports for the neutral system (k(2)[(Me3N+)C6H4 center dot + O-2] = 2.8 x 10(-11) cm(3) molecule(-1) s(-1), Phi = 4.9%; k(2)[(-O2C)C6H4 center dot + O-2] = 5.4 x 10(-1)1 cm(3) molecule(-1) s(-1), Phi = 9.2%) and the resulting mass spectra provide unequivocal evidence for the formation of phenylperoxyl radicals. Collisional activation of isolated phenylperoxyl radicals reveals unimolecular decomposition by three pathways: (i) loss of dioxygen to reform the initial phenyl radical; (ii) loss of atomic oxygen yielding a phenoxyl radical; and (iii) ejection of the formyl radical to give cyclopentadienone. Stable isotope labeling confirms these assignments. Quantum chemical calculations for both charge-tagged and neutral phenylperoxyl radicals confirm that loss of formyl radical is accessible both thermodynamically and entropically and competitive with direct loss of both hydrogen atom and carbon dioxide.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two native copper-containing amine oxidases (EC 1.4.3.21) have been isolated from Rhodococcus opacus and reveal phenotypic plasticity and catalytic activity with respect to structurally diverse natural and synthetic amines. Altering the amine growth substrate has enabled tailored and targeted oxidase upreg-ulation, which with subsequent treatment by precipitation, ion exchange and gel filtration, achieved a 90–150 fold purification. MALDI-TOF mass spectrometric and genomic analysis has indicated multiple gene activation with complex biodegradation pathways and regulatory mechanisms. Additional post-purification characterisation has drawn on the use of carbonyl reagent and chelating agent inhibitors. Michaelis–Menten kinetics for common aliphatic and aromatic amine substrates and several structural analogues demonstrated a broad specificity and high affinity with Michaelis constants (K M) ranging from 0.1 to 0.9 mM for C 1 –C 5 aliphatic mono-amines and <0.2 mM for a range of aromatic amines. Potential exploitation of the enzymatic versatility of the two isolated oxidases in biosensing and bioprocessing is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The last few years have brought an increasing interest in the chemistry of rite interstellar and circumstellar environs. Many of the molecular species discovered in remote galactic regions have been dubbed 'non-terrestrial' because of their unique structures (Thaddeus et al, 1993). These findings have provided a challenge to chemists in many differing fields to attempt to generate these unusual species in the laboratory of particular recent interest have been the unsaturated hydrocarbon families, CnH and CnH2, which have been pursued by a number of diverse methodologies. A wine range of heterocumulenes, including CnO, HCnO, CnN, HCnN, CnS, HCnS, CnSi and HCnSi have also provided intriguing targets for laboratory experiments. Strictly the term cumulene refers to a class of compounds that possess a series of adjacent double bonds, with allene representing the simplest example (H2C=C=CH2). However for many of the non-terrestrial molecules presented here, the carbon chain cannot be described in terms of a single simple valence structure, and so we use the terms cumulene and heterocumulene in a more general sense: to describe molecular species that contain an unsaturated polycarbon chain. Mass spectrometry has proved an invaluable tool in the quest for interstellar cumulenes and heterocumulenes in the laboratory it has the ability in its many forms, to (i) generate charged analogs of these species in the gas phase, (ii) probe their connectivity, ion chemistry, and thermochemistry, and (iii) in some cases, elucidate the neutrals themselves. Here, we will discuss the progress of these studies to this time. (C) 1999 John Wiley & Sons, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Potent and specific enzyme inhibition is a key goal in the development of therapeutic inhibitors targeting proteolytic activity. The backbone-cyclized peptide, Sunflower Trypsin Inhibitor (SFTI-1) affords a scaffold that can be engineered to achieve both these aims. SFTI-1's mechanism of inhibition is unusual in that it shows fast-on/slow-off kinetics driven by cleavage and religation of a scissile bond. This phenomenon was used to select a nanomolar inhibitor of kallikrein-related peptidase 7 (KLK7) from a versatile library of SFTI variants with diversity tailored to exploit distinctive surfaces present in the active site of serine proteases. Inhibitor selection was achieved through the use of size exclusion chromatography to separate protease/inhibitor complexes from unbound inhibitors followed by inhibitor identification according to molecular mass ascertained by mass spectrometry. This approach identified a single dominant inhibitor species with molecular weight of 1562.4 Da, which is consistent with the SFTI variant SFTI-WCTF. Once synthesized individually this inhibitor showed an IC50 of 173.9 ± 7.6 nM against chromogenic substrates and could block protein proteolysis. Molecular modeling analysis suggested that selection of SFTI-WCTF was driven by specific aromatic interactions and stabilized by an enhanced internal hydrogen bonding network. This approach provides a robust and rapid route to inhibitor selection and design.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the structure of the title salt C7H10NO+ C8H3Cl2O4- the benzene planes of the cation and anion are essentially parallel [inter-ring dihedral angle 4.8(2)deg]. In the anion the carboxylic acid and carboxylate groups make dihedral angles of 19.0(2) and 79.5(2)\%, respectively, with the benzene ring. Aminium N-H...O, carboxylic acid O-H...O and weak aromatic C-H...O hydrogen-bonding associations with carboxyl O-atom acceptors together with cation-anion pi-pi ring interactions [minimum ring centroid separation = 3.734(3)Ang] give a two-dimensional sheet structure which lies parallel to (001).