328 resultados para 3D surfaces


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effective management of groundwater requires stakeholders to have a realistic conceptual understanding of the groundwater systems and hydrological processes.However, groundwater data can be complex, confusing and often difficult for people to comprehend..A powerful way to communicate understanding of groundwater processes, complex subsurface geology and their relationships is through the use of visualisation techniques to create 3D conceptual groundwater models. In addition, the ability to animate, interrogate and interact with 3D models can encourage a higher level of understanding than static images alone. While there are increasing numbers of software tools available for developing and visualising groundwater conceptual models, these packages are often very expensive and are not readily accessible to majority people due to complexity. .The Groundwater Visualisation System (GVS) is a software framework that can be used to develop groundwater visualisation tools aimed specifically at non-technical computer users and those who are not groundwater domain experts. A primary aim of GVS is to provide management support for agencies, and enhancecommunity understanding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Howard East rural area has experienced a rapid growth of small block subdivisions and horticulture over the last 40 years, which has been based on groundwater supply. Early bores in the area provide part of the water supply for Darwin City and are maintained and monitored by NT Power & Water Corporation. The Territory government (NRETAS) has established a monitoring network, and now 48 bores are monitored. However, in the area there are over 2700 private bores that are unregulated.Although NRETAS has both FDM and FEM simulations for the region, community support for potential regulation is sought. To improve stakeholder understanding of the resource QUT was retained by the TRaCKconsortium to develop a 3D visualisation of the groundwater system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: SEQ Catchments Ltd and QUT are collaborating on groundwater investigations in the SE Qld region, which utilise community engagement and 3D Visualisation methodologies. The projects, which have been funded by the Australian Government’s NHT and Caring for our Country programmes, were initiated from local community concerns regarding groundwater sustainability and quality in areas where little was previously known. ----- Objectives: Engage local and regional stakeholders to tap all available sources of information;•Establish on-going (2 years +) community-based groundwater / surface water monitoring programmes;•Develop 3D Visualisation from all available data; and•Involve, train and inform the local community for improved on-ground land and water use management. ----- Results and findings: Respectful community engagement yielded information, access to numerous monitoring sites and education opportunities at low cost, which would otherwise be unavailable. A Framework for Community-Based Groundwater Monitoring has been documented (Todd, 2008).A 3D visualisation models have been developed for basaltic settings, which relate surface features familiar to the local community with the interpreted sub-surface hydrogeology. Groundwater surface movements have been animated and compared to local rainfall using the time-series monitoring data.An important 3D visualisation feature of particular interest to the community was the interaction between groundwater and surface water. This factor was crucial in raising awareness of potential impacts of land and water use on groundwater and surface water resources.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The complex relationship between the hydrodynamic environment and surrounding tissues directly impacts on the design and production of clinically useful grafts and implants. Tissue engineers have generally seen bioreactors as 'black boxes' within which tissue engineering constructs (TECs) are cultured. It is accepted that a more detailed description of fluid mechanics and nutrient transport within process equipment can be achieved by using computational fluid dynamics (CFD) technology. This review discusses applications of CFD for tissue engineering-related bioreactors -- fluid flow processes have direct implications on cellular responses such as attachment, migration and proliferation. We conclude that CFD should be seen as an invaluable tool for analyzing and visualizing the impact of fluidic forces and stresses on cells and TECs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Process modeling is a complex organizational task that requires many iterations and communication between the business analysts and the domain specialists involved in the process modeling. The challenge of process modeling is exacerbated, when the process of modeling has to be performed in a cross-organizational, distributed environment. Some systems have been developed to support collaborative process modeling, all of which use traditional 2D interfaces. We present an environment for collaborative process modeling, using 3D virtual environment technology. We make use of avatar instantiations of user ego centres, to allow for the spatial embodiment of the user with reference to the process model. We describe an innovative prototype collaborative process modeling approach, implemented as a modeling environment in Second Life. This approach leverages the use of virtual environments to provide user context for editing and collaborative exercises. We present a positive preliminary report on a case study, in which a test group modelled a business process using the system in Second Life.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Any biomaterial implanted within the human body is influenced by the interactions that take place between its surface and the surrounding biological milieu. These interactions are known to influence the tissue interface dynamic, and thus act to emphasize the need to study cell-surface interactions as part of any biomaterial design process. The work described here investigates the relationship between human osteoblast attachment, spreading and focal contact formation on selected surfaces using immunostaining and digital image processing for vinculin, a key focal adhesion component. Our observations show that a relationship exists between levels of cell attachment, the degree of vinculin-associated plaque formation and biocompatibility. It also suggests that cell adhesion is not indicative of how supportive a substrate is to cell spreading, and that cell spreading

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract: This paper details an in-vitro study using human adipose tissue-derived precursor/stem cells (ADSCs) in three-dimensional (3D) tissue culture systems. ADSCs from 3 donors were seeded onto NaOH-treated medical grade polycaprolactone-tricalcium phosphate (mPCL-TCP) scaffolds with two different matrix components; fibrin glue and lyophilized collagen. ADSCs within these scaffolds were then induced to differentiate along the osteogenic lineage for a 28-day period and various assays and imaging techniques were performed at Day 1, 7, 14, 21 and 28 to assess and compare the ADSC’s adhesion, viability, proliferation, metabolism and differentiation along the osteogenic lineage when cultured in the different scaffold/matrix systems. The ADSC cells were proliferative in both collagen and fibrin mPCL-TCP scaffold systems with a consistently higher cell number (by comparing DNA amounts) in the induced group over the non-induced groups for both scaffold systems. In response to osteogenic induction, these ADSCs expressed elevated osteocalcin, alkaline phosphatase and osteonectin levels. Cells were able to proliferate within the pores of the scaffolds and form dense cellular networks after 28 days of culture and induction. The successful cultivation of osteogenic by FDM process manufactured ADSCs within a 3D matrix comprising fibrin glue or collagen, immobilized within a robust synthetic scaffold is a promising technique which should enhance their potential usage in the regenerative medicine arena, such as bone tissue engineering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnetic Resonance Imaging (MRI) offers a valuable research tool for the assessment of 3D spinal deformity in AIS, however the horizontal patient position imposed by conventional scanners removes the axial compressive loading on the spine which is an important determinant of deformity shape and magnitude in standing scoliosis patients. The objective of this study was to design, construct and test an MRI compatible compression device for research into the effect of axial loading on spinal deformity using supine MRI scans. The compression device was designed and constructed, consisting of a vest worn by the patient, which was attached via straps to a pneumatically actuated footplate. An applied load of 0.5 x bodyweight was remotely controlled by a unit in the scanner operator’s console. The entire device was constructed using non-metallic components for MRI compatibility. The device was evaluated by performing unloaded and loaded supine MRI scans on a series of 10 AIS patients. The study concluded that an MRI compatible compression device had been successfully designed and constructed, providing a research tool for studies into the effect of axial loading on 3D spinal deformity in scoliosis. The 3D axially loaded MR imaging capability developed in this study will allow future research investigations of the effect of axial loading on spinal rotation, and for imaging the response of scoliotic spinal tissues to axial loading.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adolescent Idiopathic Scoliosis (AIS) has been associated with reduced pulmonary function believed to be due to a restriction of lung volume by the deformed thoracic cavity. A recent study by our group examined the changes in lung volume pre and post anterior thoracoscopic scoliosis correction using pulmonary function testing (1), however the anatomical changes in ribcage shape and left/right lung volume after thoracoscopic surgery which govern overall respiratory capacity are unknown. The aim of this study was to use 3D rendering from CT scan data to compare lung and ribcage anatomical changes from pre to two years post thoracoscopic anterior scoliosis correction. The study concluded that 3D volumetric reconstruction from CT scans is a powerful means of evaluating changes in pulmonary and thoracic anatomy following surgical AIS correction. Most likely, lung volume changes following thoracoscopic scoliosis correction are multifactorial and affected by changes in height (due to residual growth), ribcage shape, diaphragm positioning, Cobb angle correction in the thoracic spine. Further analysis of the 3D reconstructions will be performed to assess how each of these factors affect lung volume in this patient cohort.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An investigation has been made of the interactions between silicone oil and various solid substrates immersed in aqueous solutions. Measurements were made using an atomic force microscope (AFM) using the colloid-probe method. The silicone oil drop is simulated by coating a small silica sphere with the oil, and measuring the force as this coated sphere is brought close to contact with a flat solid surface. It is found that the silicone oil surface is negatively charged, which causes a double-layer repulsion between the oil drop and another negatively charged surface such as mica. With hydrophilic solids, this repulsion is strong enough to prevent attachment of the drop to the solid. However, with hydrophobic surfaces there is an additional attractive force which overcomes the double-layer repulsion, and the silicone oil drop attaches to the solid. A "ramp" force appears in some, but not all, of the data sets. There is circumstantial evidence that this force results from compression of the silicone oil film coated on the glass sphere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discusses the outcomes of a research project on nutrients build-up on urban road surfaces. Nutrient build-up was investigated on road sites belonging to residential, industrial and commercial land use. Collected build-up samples were separated into five particle size ranges and were tested for total nitrogen (TN), total phosphorus (TP) and sub species of nutrients, namely, NO2-, NO3-, TKN and PO43-. Multivariate analytical techniques were used to analyse the data and to develop detailed understanding on build-up. Data analysis revealed that the solids loads on urban road surfaces are highly influenced by factors such as land use, antecedent dry period and traffic volume. However, the nutrient build-up process was found to be independent of the type of land use. It was solely dependent on the particle size of solids build-up. Most of the nutrients were associated with the particle size range <150 μm. Therefore, the removal of particles below 150 µm from road surfaces is of importance for the removal of nitrogen and phosphorus from road surface solids build-up. It is also important to consider the differences in the composition of nitrogen and phosphorus build-up in the context of designing effective stormwater quality mitigation strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the outcomes of a study which focused on evaluating roof surfaces as stormwater harvesting catchments. Build-up and wash-off samples were collected from model roof surfaces. The collected build-up samples were separated into five different particle size ranges prior to the analysis of physico-chemical parameters. Study outcomes showed that roof surfaces are efficient catchment surfaces for the deposition of fine particles which travel over long distances. Roof surfaces contribute relatively high pollutant loads to the runoff and hence significantly influence the quality of the harvested rainwater. Pollutants associated with solids build-up on roof surfaces can vary with time, even with minimal changes to total solids load and particle size distribution. It is postulated that this variability is due to changes in distant atmospheric pollutant sources and wind patterns. The study highlighted the requirement for first flush devices to divert the highly polluted initial portion of roof runoff. Furthermore, it is highly recommended to not to harvest runoff from small intensity rainfall events since there is a high possibility that the runoff would contain a significant amount of pollutants even after the initial runoff fraction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Lockyer Valley, southeast Queensland, hosts intensive irrigated agriculture using groundwater from over 5000 alluvial bores. A current project is considering introduction of PRW (purified recycled water) to augment groundwater supplies. To assess this, a valley-wide MODFLOW simulation model is being developed plus a new unsaturated zone flow model. To underpin these models and provide a realistic understanding of the aquifer framework a 3D visualisation model has been developed using Groundwater Visualisation System (GVS) software produced at QUT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnetic Resonance Imaging (MRI) offers a valuable research tool for the assessment of 3D spinal deformity in AIS, however the horizontal patient position imposed by conventional scanners removes the axial compressive loading on the spine. The objective of this study was to design, construct and test an MRI compatible compression device for research into the effect of axial loading on spinal deformity using supine MRI scans. The device was evaluated by performing unloaded and loaded supine MRI scans on a series of 10 AIS patients. The patient group had a mean initial (unloaded) major Cobb angle of 43±7º, which increased to 50±9º on application of the compressive load. The 7° increase in mean Cobb angle is consistent with that reported by a previous study comparing standing versus supine posture in scoliosis patients (Torell et al, 1985. Spine 10:425-7).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims: To develop clinical protocols for acquiring PET images, performing CT-PET registration and tumour volume definition based on the PET image data, for radiotherapy for lung cancer patients and then to test these protocols with respect to levels of accuracy and reproducibility. Method: A phantom-based quality assurance study of the processes associated with using registered CT and PET scans for tumour volume definition was conducted to: (1) investigate image acquisition and manipulation techniques for registering and contouring CT and PET images in a radiotherapy treatment planning system, and (2) determine technology-based errors in the registration and contouring processes. The outcomes of the phantom image based quality assurance study were used to determine clinical protocols. Protocols were developed for (1) acquiring patient PET image data for incorporation into the 3DCRT process, particularly for ensuring that the patient is positioned in their treatment position; (2) CT-PET image registration techniques and (3) GTV definition using the PET image data. The developed clinical protocols were tested using retrospective clinical trials to assess levels of inter-user variability which may be attributed to the use of these protocols. A Siemens Somatom Open Sensation 20 slice CT scanner and a Philips Allegro stand-alone PET scanner were used to acquire the images for this research. The Philips Pinnacle3 treatment planning system was used to perform the image registration and contouring of the CT and PET images. Results: Both the attenuation-corrected and transmission images obtained from standard whole-body PET staging clinical scanning protocols were acquired and imported into the treatment planning system for the phantom-based quality assurance study. Protocols for manipulating the PET images in the treatment planning system, particularly for quantifying uptake in volumes of interest and window levels for accurate geometric visualisation were determined. The automatic registration algorithms were found to have sub-voxel levels of accuracy, with transmission scan-based CT-PET registration more accurate than emission scan-based registration of the phantom images. Respiration induced image artifacts were not found to influence registration accuracy while inadequate pre-registration over-lap of the CT and PET images was found to result in large registration errors. A threshold value based on a percentage of the maximum uptake within a volume of interest was found to accurately contour the different features of the phantom despite the lower spatial resolution of the PET images. Appropriate selection of the threshold value is dependant on target-to-background ratios and the presence of respiratory motion. The results from the phantom-based study were used to design, implement and test clinical CT-PET fusion protocols. The patient PET image acquisition protocols enabled patients to be successfully identified and positioned in their radiotherapy treatment position during the acquisition of their whole-body PET staging scan. While automatic registration techniques were found to reduce inter-user variation compared to manual techniques, there was no significant difference in the registration outcomes for transmission or emission scan-based registration of the patient images, using the protocol. Tumour volumes contoured on registered patient CT-PET images using the tested threshold values and viewing windows determined from the phantom study, demonstrated less inter-user variation for the primary tumour volume contours than those contoured using only the patient’s planning CT scans. Conclusions: The developed clinical protocols allow a patient’s whole-body PET staging scan to be incorporated, manipulated and quantified in the treatment planning process to improve the accuracy of gross tumour volume localisation in 3D conformal radiotherapy for lung cancer. Image registration protocols which factor in potential software-based errors combined with adequate user training are recommended to increase the accuracy and reproducibility of registration outcomes. A semi-automated adaptive threshold contouring technique incorporating a PET windowing protocol, accurately defines the geometric edge of a tumour volume using PET image data from a stand alone PET scanner, including 4D target volumes.