110 resultados para 200400 LINGUISTICS
Resumo:
This paper presents some theoretical perspectives that might inform the design and development of information and communications technology (ICT) tools to support integrated (in-session) reflection and deep learning during e-learning. The role of why questioning provides the focus of discussion and is informed by the literature on critical thinking, sense-making, and reflective practice, as well as recent developments in knowledge management, computational linguistics and automated question generation. It is argued that there exists enormous scope for the development of ICT scaffolding targeted at supporting reflective practice during e-learning. The first generations of e-Portfolio tools provide some evidence for the significance of the benefits of integrating reflection into the design of ICT systems; however, following the review of a number of such systems, as well as a range of ICT applications and services designed to support e-learning, it is argued that the scope of implementation is limited.
Resumo:
This chapter reports on a study of oracy in a first-year university Business course, with particular interest in the oracy demands for second language-using international students. The research is relevant at a time when Higher Education is characterised by the confluence of increased international enrolments, more dialogic teaching and learning, and imperatives for teamwork and collaboration. Data sources for the study included videotaped lectures and tutorials, course documents, student surveys, and an interview with the lecturer. The findings pointed to a complex, oracy-laden environment where interactive talk fulfilled high-stakes functions related to social inclusion, the co-construction of knowledge, and the accomplishment of assessment tasks. The salience of talk posed significant challenges for students negotiating these core functions in their second language. The study highlights the oracy demands in university courses and foregrounds the need for university teachers, curriculum writers and speaking test developers to recognise these demands and explicate them for the benefit of all students.
Resumo:
Compositionality is a frequently made assumption in linguistics, and yet many human subjects reveal highly non-compositional word associations when confronted with novel concept combinations. This article will show how a non-compositional account of concept combinations can be supplied by modelling them as interacting quantum systems.
Resumo:
Listening comprehension is the primary channel of learning a language. Yet of the four dominant macro-skills (listening, speaking, reading and writing), it is often difficult and inaccessible for second and foreign language learners due to its implicit process. The secondary skill, speaking, proceeds listening cognitively. Aural/oral skills precede the graphic skills, such as reading and writing, as they form the circle of language learning process. However, despite the significant relationship with other language skills, listening comprehension is treated lightly in the applied linguistics research. Half of our daily conversation and three quarters of classroom interaction are virtually devoted to listening comprehension. To examine the relationship of listening skill with other language skills, the outcome of 1800 Iranian participants undertaking International English Language Testing System (IELTS) in Tehran indicates the close correlation between listening comprehension and the overall language proficiency.
Resumo:
This paper develops a framework for classifying term dependencies in query expansion with respect to the role terms play in structural linguistic associations. The framework is used to classify and compare the query expansion terms produced by the unigram and positional relevance models. As the unigram relevance model does not explicitly model term dependencies in its estimation process it is often thought to ignore dependencies that exist between words in natural language. The framework presented in this paper is underpinned by two types of linguistic association, namely syntagmatic and paradigmatic associations. It was found that syntagmatic associations were a more prevalent form of linguistic association used in query expansion. Paradoxically, it was the unigram model that exhibited this association more than the positional relevance model. This surprising finding has two potential implications for information retrieval models: (1) if linguistic associations underpin query expansion, then a probabilistic term dependence assumption based on position is inadequate for capturing them; (2) the unigram relevance model captures more term dependency information than its underlying theoretical model suggests, so its normative position as a baseline that ignores term dependencies should perhaps be reviewed.
Resumo:
This paper develops and evaluates an enhanced corpus based approach for semantic processing. Corpus based models that build representations of words directly from text do not require pre-existing linguistic knowledge, and have demonstrated psychologically relevant performance on a number of cognitive tasks. However, they have been criticised in the past for not incorporating sufficient structural information. Using ideas underpinning recent attempts to overcome this weakness, we develop an enhanced tensor encoding model to build representations of word meaning for semantic processing. Our enhanced model demonstrates superior performance when compared to a robust baseline model on a number of semantic processing tasks.
Resumo:
This paper presents a combined structure for using real, complex, and binary valued vectors for semantic representation. The theory, implementation, and application of this structure are all significant. For the theory underlying quantum interaction, it is important to develop a core set of mathematical operators that describe systems of information, just as core mathematical operators in quantum mechanics are used to describe the behavior of physical systems. The system described in this paper enables us to compare more traditional quantum mechanical models (which use complex state vectors), alongside more generalized quantum models that use real and binary vectors. The implementation of such a system presents fundamental computational challenges. For large and sometimes sparse datasets, the demands on time and space are different for real, complex, and binary vectors. To accommodate these demands, the Semantic Vectors package has been carefully adapted and can now switch between different number types comparatively seamlessly. This paper describes the key abstract operations in our semantic vector models, and describes the implementations for real, complex, and binary vectors. We also discuss some of the key questions that arise in the field of quantum interaction and informatics, explaining how the wide availability of modelling options for different number fields will help to investigate some of these questions.
Resumo:
This paper outlines a novel approach for modelling semantic relationships within medical documents. Medical terminologies contain a rich source of semantic information critical to a number of techniques in medical informatics, including medical information retrieval. Recent research suggests that corpus-driven approaches are effective at automatically capturing semantic similarities between medical concepts, thus making them an attractive option for accessing semantic information. Most previous corpus-driven methods only considered syntagmatic associations. In this paper, we adapt a recent approach that explicitly models both syntagmatic and paradigmatic associations. We show that the implicit similarity between certain medical concepts can only be modelled using paradigmatic associations. In addition, the inclusion of both types of associations overcomes the sensitivity to the training corpus experienced by previous approaches, making our method both more effective and more robust. This finding may have implications for researchers in the area of medical information retrieval.
Resumo:
This handbook chapter explores the relationship between critical theory and seminal studies of literacy which investigate inequities in education. It identifies new research questions to explore the connections between literacy and power, but go beyond promises of emancipation.
Resumo:
A user’s query is considered to be an imprecise description of their information need. Automatic query expansion is the process of reformulating the original query with the goal of improving retrieval effectiveness. Many successful query expansion techniques ignore information about the dependencies that exist between words in natural language. However, more recent approaches have demonstrated that by explicitly modeling associations between terms significant improvements in retrieval effectiveness can be achieved over those that ignore these dependencies. State-of-the-art dependency-based approaches have been shown to primarily model syntagmatic associations. Syntagmatic associations infer a likelihood that two terms co-occur more often than by chance. However, structural linguistics relies on both syntagmatic and paradigmatic associations to deduce the meaning of a word. Given the success of dependency-based approaches and the reliance on word meanings in the query formulation process, we argue that modeling both syntagmatic and paradigmatic information in the query expansion process will improve retrieval effectiveness. This article develops and evaluates a new query expansion technique that is based on a formal, corpus-based model of word meaning that models syntagmatic and paradigmatic associations. We demonstrate that when sufficient statistical information exists, as in the case of longer queries, including paradigmatic information alone provides significant improvements in retrieval effectiveness across a wide variety of data sets. More generally, when our new query expansion approach is applied to large-scale web retrieval it demonstrates significant improvements in retrieval effectiveness over a strong baseline system, based on a commercial search engine.
Resumo:
This thesis makes several contributions towards improved methods for encoding structure in computational models of word meaning. New methods are proposed and evaluated which address the requirement of being able to easily encode linguistic structural features within a computational representation while retaining the ability to scale to large volumes of textual data. Various methods are implemented and evaluated on a range of evaluation tasks to demonstrate the effectiveness of the proposed methods.
Resumo:
Globalised communication in society today is characterised by multimodal forms of meaning making in a context of increased cultural and linguistic diversity, calling for the teaching of multiliteracies. This transformation requires the development of a new metalanguage or language of description for the burgeoning and hybridised variety of text forms associated with information and multimedia technologies. To continue to teach to a narrow band of print-based genres, grammars, and skills is to ignore the reality of textual practices outside of schools. This paper draws from classroom research in a multiliteracies classroom to provide a multimodal analysis of a claymation movie. The significance of the paper is the synthesis of a multimodal metalanguage for teachers and students to describe the features of work in the kineikonic (moving image) mode.
Resumo:
Many successful query expansion techniques ignore information about the term dependencies that exist within natural language. However, researchers have recently demonstrated that consistent and significant improvements in retrieval effectiveness can be achieved by explicitly modelling term dependencies within the query expansion process. This has created an increased interest in dependency-based models. State-of-the-art dependency-based approaches primarily model term associations known within structural linguistics as syntagmatic associations, which are formed when terms co-occur together more often than by chance. However, structural linguistics proposes that the meaning of a word is also dependent on its paradigmatic associations, which are formed between words that can substitute for each other without effecting the acceptability of a sentence. Given the reliance on word meanings when a user formulates their query, our approach takes the novel step of modelling both syntagmatic and paradigmatic associations within the query expansion process based on the (pseudo) relevant documents returned in web search. The results demonstrate that this approach can provide significant improvements in web re- trieval effectiveness when compared to a strong benchmark retrieval system.