419 resultados para 1145


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gradual authentication is a principle proposed by Meadows as a way to tackle denial-of-service attacks on network protocols by gradually increasing the confidence in clients before the server commits resources. In this paper, we propose an efficient method that allows a defending server to authenticate its clients gradually with the help of some fast-to-verify measures. Our method integrates hash-based client puzzles along with a special class of digital signatures supporting fast verification. Our hash-based client puzzle provides finer granularity of difficulty and is proven secure in the puzzle difficulty model of Chen et al. (2009). We integrate this with the fast-verification digital signature scheme proposed by Bernstein (2000, 2008). These schemes can be up to 20 times faster for client authentication compared to RSA-based schemes. Our experimental results show that, in the Secure Sockets Layer (SSL) protocol, fast verification digital signatures can provide a 7% increase in connections per second compared to RSA signatures, and our integration of client puzzles with client authentication imposes no performance penalty on the server since puzzle verification is a part of signature verification.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stigmergy is a biological term used when discussing insect or swarm behaviour, and describes a model supporting environmental communication separately from artefacts or agents. This phenomenon is demonstrated in the behavior of ants and their food gathering process when following pheromone trails, or similarly termites and their termite mound building process. What is interesting with this mechanism is that highly organized societies are achieved with a lack of any apparent management structure. Stigmergic behavior is implicit in the Web where the volume of users provides a self-organizing and self-contextualization of content in sites which facilitate collaboration. However, the majority of content is generated by a minority of the Web participants. A significant contribution from this research would be to create a model of Web stigmergy, identifying virtual pheromones and their importance in the collaborative process. This paper explores how exploiting stigmergy has the potential of providing a valuable mechanism for identifying and analyzing online user behavior recording actionable knowledge otherwise lost in the existing web interaction dynamics. Ultimately this might assist our building better collaborative Web sites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although player enjoyment is central to computer games, there is currently no accepted model of player enjoyment in games. There are many heuristics in the literature, based on elements such as the game interface, mechanics, gameplay, and narrative. However, there is a need to integrate these heuristics into a validated model that can be used to design, evaluate, and understand enjoyment in games. We have drawn together the various heuristics into a concise model of enjoyment in games that is structured by flow. Flow, a widely accepted model of enjoyment, includes eight elements that, we found, encompass the various heuristics from the literature. Our new model, GameFlow, consists of eight elements -- concentration, challenge, skills, control, clear goals, feedback, immersion, and social interaction. Each element includes a set of criteria for achieving enjoyment in games. An initial investigation and validation of the GameFlow model was carried out by conducting expert reviews of two real-time strategy games, one high-rating and one low-rating, using the GameFlow criteria. The result was a deeper understanding of enjoyment in real-time strategy games and the identification of the strengths and weaknesses of the GameFlow model as an evaluation tool. The GameFlow criteria were able to successfully distinguish between the high-rated and low-rated games and identify why one succeeded and the other failed. We concluded that the GameFlow model can be used in its current form to review games; further work will provide tools for designing and evaluating enjoyment in games.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper explores the embodiment of agency concepts in tangible user interfaces to create meaningful learning experiences. Current notions of agent-based tangible technology are extended, through the development of low-fidelity prototypes, to include additional flexibility and adaptability. A study involving these prototypes was conducted in a kindergarten environment with nine four-year-old children. Observations of children's interactions with the prototypes produced insightful results which will be used to further refine the product under development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes an ethnographic study completed within a kindergarten environment with the view of gaining insights into the development of new technology for young children. Ethnography within HCI has primarily focused on studies of work practices. This project explored the effectiveness of ethnography in supporting the design of playful technology for a constantly changing, creative, and (sometimes) messy environment. The study was effective in drawing out patterns in observations and as such provides useful suggestions for the development of technology for kindergarten settings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper examines the issues surrounding the successful design and development of tangible technology for optimal engagement in playful activities. At present there is very little data on how, and in what contexts, tangible interactions with technology promote lasting engagement and immersion. The framework at the core of this paper has been designed to guide the effective design of tangible technology for immersive interaction. The paper investigates the relationship between tangible user interfaces (TUI) characteristics of representation and control, and immersive flow experiences produced through balancing skill and challenge in user interaction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we present an account of children's interactions with a mobile technology prototype within a school context. The Noise Detectives trial was conducted in a school setting with the aim of better understanding the role of mobile technology as a mediator within science learning activities. Over eighty children, aged between ten and twelve, completed an outdoor data gathering activity using a mobile learning prototype that included paper and digital components. They measured and recorded noise levels at a range of locations throughout the schools. We analyzed the activity to determine how the components of the prototype were integrated into the learning activity, and to identify differences in behavior that resulted from using these components. We present design implications that resulted from observed differences in prototype use and appropriation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reports on the challenges faced during the design and deployment of educationally-focused cultural probes with children. The aim of the project was to use cultural probes to discover insights into children's interests and ideas within an educational context. The deployment of a cultural probe pack with children aged between 11 and 13 has demonstrated the method's effectiveness as a tool for design inspiration. Children's responses to the cultural probe have provided a valuable insight into the attributes of successful probe activities, the nature of contextual information which may be gathered and the limitations of the method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The project is working towards building an understanding of the personal interests and experiences of children with the aim of designing appropriate, usable and, most importantly, inspirational educational technology. kidprobe, an adaptation of the technology probe concept, has been used as a lightweight method of gaining contextual information about children's interactions with 'fun' technology. kidprobe has produced design inspiration which focuses primarily on the social and emotional connections children made. The use of kidprobe has generated some important ideas for improving the use of probes with children. It is an important first step in understanding how to effectively adapt probing techniques to inspire the design of technology for children.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tangible programming elements offer the dynamic and programmable properties of a computer without the complexity introduced by the keyboard, mouse and screen. This paper explores the extent to which programming skills are used by children during interactions with a set of tangible programming elements: the Electronic Blocks. An evaluation of the Electronic Blocks indicates that children become heavily engaged with the blocks, and learn simple programming with a minimum of adult support.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electronic Blocks are a new programming environment, designed specifically for children aged between three and eight years. As such, the design of the Electronic Block environment is firmly based on principles of developmentally appropriate practices in early childhood education. The Electronic Blocks are physical, stackable blocks that include sensor blocks, action blocks and logic blocks. Evaluation of the Electronic Blocks with both preschool and primary school children shows that the blocks' ease of use and power of engagement have created a compelling tool for the introduction of meaningful technology education in an early childhood setting. The key to the effectiveness of the Electronic Blocks lies in an adherence to theories of development and learning throughout the Electronic Blocks design process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper addresses the tradeoff between energy consumption and localization performance in a mobile sensor network application. The focus is on augmenting GPS location with more energy-efficient location sensors to bound position estimate uncertainty in order to prolong node lifetime. We use empirical GPS and radio contact data from a largescale animal tracking deployment to model node mobility, GPS and radio performance. These models are used to explore duty cycling strategies for maintaining position uncertainty within specified bounds. We then explore the benefits of using short-range radio contact logging alongside GPS as an energy-inexpensive means of lowering uncertainty while the GPS is off, and we propose a versatile contact logging strategy that relies on RSSI ranging and GPS lock back-offs for reducing the node energy consumption relative to GPS duty cycling. Results show that our strategy can cut the node energy consumption by half while meeting application specific positioning criteria.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is a big challenge to guarantee the quality of discovered relevance features in text documents for describing user preferences because of the large number of terms, patterns, and noise. Most existing popular text mining and classification methods have adopted term-based approaches. However, they have all suffered from the problems of polysemy and synonymy. Over the years, people have often held the hypothesis that pattern-based methods should perform better than term-based ones in describing user preferences, but many experiments do not support this hypothesis. The innovative technique presented in paper makes a breakthrough for this difficulty. This technique discovers both positive and negative patterns in text documents as higher level features in order to accurately weight low-level features (terms) based on their specificity and their distributions in the higher level features. Substantial experiments using this technique on Reuters Corpus Volume 1 and TREC topics show that the proposed approach significantly outperforms both the state-of-the-art term-based methods underpinned by Okapi BM25, Rocchio or Support Vector Machine and pattern based methods on precision, recall and F measures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a novel two-stage information filtering model which combines the merits of term-based and pattern- based approaches to effectively filter sheer volume of information. In particular, the first filtering stage is supported by a novel rough analysis model which efficiently removes a large number of irrelevant documents, thereby addressing the overload problem. The second filtering stage is empowered by a semantically rich pattern taxonomy mining model which effectively fetches incoming documents according to the specific information needs of a user, thereby addressing the mismatch problem. The experiments have been conducted to compare the proposed two-stage filtering (T-SM) model with other possible "term-based + pattern-based" or "term-based + term-based" IF models. The results based on the RCV1 corpus show that the T-SM model significantly outperforms other types of "two-stage" IF models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Relevance Feedback (RF) has been proven very effective for improving retrieval accuracy. Adaptive information filtering (AIF) technology has benefited from the improvements achieved in all the tasks involved over the last decades. A difficult problem in AIF has been how to update the system with new feedback efficiently and effectively. In current feedback methods, the updating processes focus on updating system parameters. In this paper, we developed a new approach, the Adaptive Relevance Features Discovery (ARFD). It automatically updates the system's knowledge based on a sliding window over positive and negative feedback to solve a nonmonotonic problem efficiently. Some of the new training documents will be selected using the knowledge that the system currently obtained. Then, specific features will be extracted from selected training documents. Different methods have been used to merge and revise the weights of features in a vector space. The new model is designed for Relevance Features Discovery (RFD), a pattern mining based approach, which uses negative relevance feedback to improve the quality of extracted features from positive feedback. Learning algorithms are also proposed to implement this approach on Reuters Corpus Volume 1 and TREC topics. Experiments show that the proposed approach can work efficiently and achieves the encouragement performance.