334 resultados para 02270130 TM-2
Resumo:
Paropsis atomaria is a recently emerged pest of eucalypt plantations in subtropical Australia. Its broad host range of at least 20 eucalypt species and wide geographical distribution provides it the potential to become a serious forestry pest both within Australia and, if accidentally introduced, overseas. Although populations of P. atomaria are genetically similar throughout its range, population dynamics differ between regions. Here, we determine temperature-dependent developmental requirements using beetles sourced from temperate and subtropical zones by calculating lower temperature thresholds, temperature-induced mortality, and day-degree requirements. We combine these data with field mortality estimates of immature life stages to produce a cohort-based model, ParopSys, using DYMEX™ that accurately predicts the timing, duration, and relative abundance of life stages in the field and number of generations in a spring–autumn (September–May) field season. Voltinism was identified as a seasonally plastic trait dependent upon environmental conditions, with two generations observed and predicted in the Australian Capital Territory, and up to four in Queensland. Lower temperature thresholds for development ranged between 4 and 9 °C, and overall development rates did not differ according to beetle origin. Total immature development time (egg–adult) was approximately 769.2 ± S.E. 127.8 DD above a lower temperature threshold of 6.4 ± S.E. 2.6 °C. ParopSys provides a basic tool enabling forest managers to use the number of generations and seasonal fluctuations in abundance of damaging life stages to estimate the pest risk of P. atomaria prior to plantation establishment, and predict the occurrence and duration of damaging life stages in the field. Additionally, by using local climatic data the pest potential of P. atomaria can be estimated to predict the risk of it establishing if accidentally introduced overseas. Improvements to ParopSys’ capability and complexity can be made as more biological data become available.
Resumo:
Background: Polybrominated diphenyl ethers (PBDEs) are used as flame retardants in many products and have been detected in human samples worldwide. Limited data show that concentrations are elevated in young children. Objectives: We investigated the association between PBDEs and age with an emphasis on young children from Australia in 2006–2007. Methods: We collected human blood serum samples (n = 2,420), which we stratified by age and sex and pooled for analysis of PBDEs. Results: The sum of BDE-47, -99, -100, and -153 concentrations (Σ4PBDE) increased from 0–0.5 years (mean ± SD, 14 ± 3.4 ng/g lipid) to peak at 2.6–3 years (51 ± 36 ng/g lipid; p < 0.001) and then decreased until 31–45 years (9.9 ± 1.6 ng/g lipid). We observed no further significant decrease among ages 31–45, 45–60 (p = 0.964), or > 60 years (p = 0.894). The mean Σ4PBDE concentration in cord blood (24 ± 14 ng/g lipid) did not differ significantly from that in adult serum at ages 15–30 (p = 0.198) or 31–45 years (p = 0.140). We found no temporal trend when we compared the present results with Australian PBDE data from 2002–2005. PBDE concentrations were higher in males than in females; however, this difference reached statistical significance only for BDE-153 (p = 0.05). Conclusions: The observed peak concentration at 2.6–3 years of age is later than the period when breast-feeding is typically ceased. This suggests that in addition to the exposure via human milk, young children have higher exposure to these chemicals and/or a lower capacity to eliminate them. Key words: Australia, children, cord blood, human blood serum, PBDEs, polybrominated diphenyl ethers. Environ Health Perspect 117:1461–1465 (2009). doi:10.1289/ehp.0900596
Resumo:
Raman spectroscopy has been used to characterise the antimonate mineral bahianite Al5Sb35+O14(OH)2 , a semi-precious gem stone. The mineral is characterised by an intense Raman band at 818 cm-1 assigned to Sb3O1413- stretching vibrations. Other lower intensity bands at 843 and 856 cm-1 are also assigned to this vibration and this concept suggests the non-equivalence of SbO units in the structure. Low intensity Raman bands at 669 and 682 cm-1 are probably assignable to the OSbO antisymmetric stretching vibrations. Raman bands at 1756, 1808 and 1929 cm-1 may be assigned to δ SbOH deformation modes, whilst Raman bands at 3462 and 3495 cm-1 are assigned to AlOH stretching vibrations. Complexity in the low wave number region is attributed to the composition of the mineral.
Resumo:
In the structure of the 1:1 proton-transfer compound of isopropylamine with 4,5-dichlorophthalic acid, C3H10N+·C8H3Cl2O4-, the three cation H-atom donors associate with three separate carboxyl O-atom anion acceptors, giving conjoint cyclic R44(12), R44(16) hydrogen-bonding cation-anion interactions in a one-dimensional ribbon structure. In the anions, the carboxyl groups lie slightly out of the plane of the benzene ring [maximum deviations = 0.439 (1) for a carboxylic acid O atom and 0.433 (1) Å for a carboxylate O atom]. However, the syn-related proton of the carboxylic acid group forms the common short intramolecular O-HOcarboxyl hydrogen bond.
Resumo:
In the structure of the title compound, C2H10N22+·C8H2Cl2O42-, the dications and dianions form hydrogen-bonded ribbon substructures which enclose conjoint cyclic R21(7), R12(7) and R42(8) associations and extend down the c-axis direction. These ribbons inter-associate down b, giving a two-dimensional sheet structure. In the dianions, one of the carboxylate groups is essentially coplanar with the benzene ring, while the other is normal to it [C-C-C-O torsion angles = 177.67 (12) and 81.94 (17)°, respectively].
Resumo:
New composite doped poly (ethylene oxide) polymer electrolyte was developed using 2-mercapto benzimidazole as plasticizer and iodide/triiodide as redox couple. The fabrication of the cell involves Poly(ethylene oxide)/ 2-mercapto benzimidazole / iodide/triiodide as polymer electrolyte in dye-sensitized solar cell fabricated with N3 dye and TiO2 nanoparticles as the photoanode and Platinum coated FTO (fluorine doped SnO2) as counter electrode. The current-volatage characteristics under simulated sunlight AM1.5 shows a short circuit current Isc of 8.7mA and open circuit photovoltage 508 mV. The conductivity measurements for the new polymer electrolyte and the photoelectrochemical measurments were carried out systematically. In 2-mercapto benzimidazole the electron rich sulphur and nitrogen atoms, act as pi-electron donors that form good interaction with iodine which plays a vital role in the performance of the fabricated dye-sensitized solar cells. The resonance effect increases the stability of the cell to a considerable extent. These results suggest that the new composite polymer electrolyte performs as a promising new doped polymer-electrolyte.
Resumo:
The 1:1 proton-transfer compounds of L-tartaric acid with 3-aminopyridine [3-aminopyridinium hydrogen (2R,3R)-tartrate dihydrate, C5H7N2+·C4H5O6-·2H2O, (I)], pyridine-3-carboxylic acid (nicotinic acid) [anhydrous 3-carboxypyridinium hydrogen (2R,3R)-tartrate, C6H6NO2+·C4H5O6-, (II)] and pyridine-2-carboxylic acid [2-carboxypyridinium hydrogen (2R,3R)-tartrate monohydrate, C6H6NO2+·C4H5O6-·H2O, (III)] have been determined. In (I) and (II), there is a direct pyridinium-carboxyl N+-HO hydrogen-bonding interaction, four-centred in (II), giving conjoint cyclic R12(5) associations. In contrast, the N-HO association in (III) is with a water O-atom acceptor, which provides links to separate tartrate anions through Ohydroxy acceptors. All three compounds have the head-to-tail C(7) hydrogen-bonded chain substructures commonly associated with 1:1 proton-transfer hydrogen tartrate salts. These chains are extended into two-dimensional sheets which, in hydrates (I) and (III) additionally involve the solvent water molecules. Three-dimensional hydrogen-bonded structures are generated via crosslinking through the associative functional groups of the substituted pyridinium cations. In the sheet struture of (I), both water molecules act as donors and acceptors in interactions with separate carboxyl and hydroxy O-atom acceptors of the primary tartrate chains, closing conjoint cyclic R44(8), R34(11) and R33(12) associations. Also, in (II) and (III) there are strong cation carboxyl-carboxyl O-HO hydrogen bonds [OO = 2.5387 (17) Å in (II) and 2.441 (3) Å in (III)], which in (II) form part of a cyclic R22(6) inter-sheet association. This series of heteroaromatic Lewis base-hydrogen L-tartrate salts provides further examples of molecular assembly facilitated by the presence of the classical two-dimensional hydrogen-bonded hydrogen tartrate or hydrogen tartrate-water sheet substructures which are expanded into three-dimensional frameworks via peripheral cation bifunctional substituent-group crosslinking interactions.
Resumo:
The mineral lewisite, (Ca,Fe,Na)2(Sb,Ti)2O6(O,OH)7 an antimony bearing mineral has been studied by Raman spectroscopy. A comparison is made with the Raman spectra of other minerals including bindheimite, stibiconite and roméite. The mineral lewisite is characterised by an intense sharp band at 517 cm-1 with a shoulder at 507 cm-1 assigned to SbO stretching modes. Raman bands of medium intensity for lewisite are observed at 300, 356 and 400 cm-1. These bands are attributed to OSbO bending vibrations. Raman bands in the OH stretching region are observed at 3200, 3328, 3471 cm-1 with a distinct shoulder at 3542 cm-1. The latter is assigned to the stretching vibration of OH units. The first three bands are attributed to water stretching vibrations. The observation of bands in the 3200 to 3500 cm-1 region suggests that water is involved in the lewisite structure. If this is the case then the formula may be better written as Ca, Fe2+, Na)2(Sb, Ti)2(O,OH)7 •xH2O.
Resumo:
The unusual (1:1) complex ‘adduct’ salt of copper(II) with 4,5-dichlorophthalic acid (H2DCPA), having formula [Cu(H2O)4(C8H3Cl2O4) (C8H4Cl2O4)] . (C8H3Cl2O4) has been synthesized and characterized using single-crystal X-ray diffraction. Crystals are monoclinic, space group P21/c, with Z = 4 in a cell with dimensions a = 20.1376(7), b =12.8408(4) c = 12.1910(4) Å, β = 105.509(4)o. The complex is based on discrete tetragonally distorted octahedral [CuO6] coordination centres with the four water ligands occupying the square planar sites [Cu-O, 1.962(4)-1.987(4) Å] and the monodentate carboxyl-O donors of two DCPA ligand species in the axial sites. The first of these bonds [Cu-O, 2.341(4) Å] is with an oxygen of a HDCPA monoanion, the second with an oxygen of a H2DCPA acid species [Cu-O, 2.418(4) Å]. The un-coordinated ‘adduct’ molecule is a HDCPA counter anion which is strongly hydrogen-bonded to the coordinated H2DCPA ligand [O… O, 2.503(6) Å] while a number of peripheral intra- and intermolecular hydrogen-bonding interactions give a two-dimensional network structure.
Resumo:
The selected arsenite minerals leiteite, reinerite and cafarsite have been studied by Raman spectroscopy. DFT calculations enabled the position of AsO22- symmetric stretching mode at 839 cm-1, the antisymmetric stretching mode at 813 cm-1, and the deformation mode at 449 cm-1 to be calculated. The Raman spectrum of leiteite shows bands at 804 and 763 cm-1 assigned to the As2O42- symmetric and antisymmetric stretching modes. The most intense Raman band of leiteite is the band at 457 cm-1 and is assigned to the ν2 As2O42- bending mode. A comparison of the Raman spectrum of leiteite is made with the arsenite minerals reinerite and cafarsite.
Resumo:
Osteoarthritic subchondral bone is characterized by abnormal bone density and enhanced production of bone turnover markers, an indication of osteoblast dysfunction. Several studies have proposed that pathological changes in articular cartilage influence the subchondral bone changes, which are typical of the progression of osteoarthritis; however, direct evidence of this has yet to be reported. The aim of the present study was to investigate what effects articular cartilage cells, isolated from normal and osteoarthritic joints, may have on the subchondral bone osteoblast phenotype, and also the potential involvement of the mitogen activated protein kinase (MAPK) signalling pathway during this process. Our results suggest that chondrocytes isolated from a normal joint inhibited osteoblast differentiation, whereas chondrocytes isolated from an osteoarthritic joint enhanced osteoblast differentiation, both via a direct and indirect cell interaction mechanisms. Furthermore, the interaction of subchondral bone osteoblasts with osteoarthritic chondrocyte conditioned media appeared to significantly activate ERK1/2 phosphorylation. On the other hand, conditioned media from normal articular chondrocytes did not affect ERK1/2 phosphorylation. Inhibition of the MAPK–ERK1/2 pathways reversed the phenotype changes of subchondral bone osteoblast, which would otherwise be induced by the conditioned media from osteoarthritic chondrocytes. In conclusion, our findings provide evidence that osteoarthritic chondrocytes affect subchondral bone osteoblast metabolism via an ERK1/2 dependent pathway.
Resumo:
The recent development of indoor wireless local area network (WLAN) standards at 2.45 GHz and 5 GHz has led to increased interest in propagation studies at these frequency bands. Within the indoor environment, human body effects can strongly reduce the quality of wireless communication systems. Human body effects can cause temporal variations and shadowing due to pedestrian movement and antenna- body interaction with portable terminals. This book presents a statistical characterisation, based on measurements, of human body effects on indoor narrowband channels at 2.45 GHz and at 5.2 GHz. A novel cumulative distribution function (CDF) that models the 5 GHz narrowband channel in populated indoor environments is proposed. This novel CDF describes the received envelope in terms of pedestrian traffic. In addition, a novel channel model for the populated indoor environment is proposed for the Multiple-Input Multiple-Output (MIMO) narrowband channel in presence of pedestrians at 2.45 GHz. Results suggest that practical MIMO systems must be sufficiently adaptive if they are to benefit from the capacity enhancement caused by pedestrian movement.
Resumo:
Raman spectra of mineral peretaite Ca(SbO)4(OH)2(SO4)2•2H2O were studied, and related to the structure of the mineral. Raman bands observed at 978 and 980 cm-1 and a series of overlapping bands observed at 1060, 1092, 1115, 1142 and 1152 cm-1 are assigned to the SO42- ν1 symmetric and ν3 antisymmetric stretching modes. Raman bands at 589 and 595 cm-1 are attributed to the SbO symmetric stretching vibrations. The low intensity Raman bands at 650 and 710 cm-1 may be attributed to SbO antisymmetric stretching modes. Raman bands at 610 cm-1 and at 417, 434 and 482 cm-1 are assigned to the SO42- 4 and 2 bending modes, respectively. Raman bands at 337 and 373 cm-1 are assigned to O-Sb-O bending modes. Multiple Raman bands for both SO42- and SbO stretching vibrations support the concept of the non-equivalence of these units in the coquandite structure.
Resumo:
The crystal structure of the modified unsymmetrically N, N'-substituted viologen chromophore, N-ethyl- N'-(2-phosphonoethyl)-4, 4'-bipyridinium dichloride 0.75 hydrate. (1) has been determined. Crystals are triclinic, space group P-1 with Z = 2 in a cell with a = 7.2550(1), b = 13.2038(5), c = 18.5752(7) Å, α = 86.495(3), β = 83.527(2), γ = 88.921(2)o. The two independent but pseudo-symmetrically related cations in the asymmetric unit form one-dimensional hydrogen-bonded chains through short homomeric phosphonic acid O-H...O links [2.455(4), 2.464(4)A] while two of the chloride anions are similarly strongly linked to phosphonic acid groups [O-H…Cl, 2.889(4), 2.896(4)Å]. The other two chloride anions together with the two water molecules of solvation (one with partial occupancy) form unusual cyclic hydrogen-bonded bis(Cl...water) dianion units which lie between the layers of bipyridylium rings of the cation chain structures with which they are weakly associated.