802 resultados para data transportation
Resumo:
Presentation by Dr Joe Young, ITS-HPC and Research Support, Managing your research data seminar, 2012
Resumo:
Introduction This study investigated the sensitivity of calculated stereotactic radiotherapy and radiosurgery doses to the accuracy of the beam data used by the treatment planning system. Methods Two sets of field output factors were acquired using fields smaller than approximately 1 cm2, for inclusion in beam data used by the iPlan treatment planning system (Brainlab, Feldkirchen, Germany). One set of output factors were measured using an Exradin A16 ion chamber (Standard Imaging, Middleton, USA). Although this chamber has a relatively small collecting volume (0.007 cm3), measurements made in small fields using this chamber are subject to the effects of volume averaging, electronic disequilibrium and chamber perturbations. The second, more accurate, set of measurements were obtained by applying perturbation correction factors, calculated using Monte Carlo simulations according to a method recommended by Cranmer-Sargison et al. [1] to measurements made using a 60017 unshielded electron diode (PTW, Freiburg, Germany). A series of 12 sample patient treatments were used to investigate the effects of beam data accuracy on resulting planned dose. These treatments, which involved 135 fields, were planned for delivery via static conformal arcs and 3DCRT techniques, to targets ranging from prostates (up to 8 cm across) to meningiomas (usually more than 2 cm across) to arterioveinous malformations, acoustic neuromas and brain metastases (often less than 2 cm across). Isocentre doses were calculated for all of these fields using iPlan, and the results of using the two different sets of beam data were evaluated. Results While the isocentre doses for many fields are identical (difference = 0.0 %), there is a general trend for the doses calculated using the data obtained from corrected diode measurements to exceed the doses calculated using the less-accurate Exradin ion chamber measurements (difference\0.0 %). There are several alarming outliers (circled in the Fig. 1) where doses differ by more than 3 %, in beams from sample treatments planned for volumes up to 2 cm across. Discussion and conclusions These results demonstrate that treatment planning dose calculations for SRT/SRS treatments can be substantially affected when beam data for fields smaller than approximately 1 cm2 are measured inaccurately, even when treatment volumes are up to 2 cm across.
Resumo:
Established Monte Carlo user codes BEAMnrc and DOSXYZnrc permit the accurate and straightforward simulation of radiotherapy experiments and treatments delivered from multiple beam angles. However, when an electronic portal imaging detector (EPID) is included in these simulations, treatment delivery from non-zero beam angles becomes problematic. This study introduces CTCombine, a purpose-built code for rotating selected CT data volumes, converting CT numbers to mass densities, combining the results with model EPIDs and writing output in a form which can easily be read and used by the dose calculation code DOSXYZnrc...
Resumo:
The Macroscopic Fundamental Diagram (MFD) relates space-mean density and flow, and the existence with dynamic features was confirmed in congested urban network in downtown Yokohama with real data set. Since the MFD represents the area-wide network traffic performances, studies on perimeter control strategies and an area traffic state estimation utilizing the MFD concept has been reported. However, limited works have been reported on real world example from signalised arterial network. This paper fuses data from multiple sources (Bluetooth, Loops and Signals) and presents a framework for the development of the MFD for Brisbane, Australia. Existence of the MFD in Brisbane arterial network is confirmed. Different MFDs (from whole network and several sub regions) are evaluated to discover the spatial partitioning for network performance representation. The findings confirmed the usefulness of appropriate network partitioning for traffic monitoring and incident detections. The discussion addressed future research directions.
Resumo:
Big data is certainly the buzz term in executive networking circles at the moment. Heralded by management consultancies and research organisations alike as the next big thing in business efficiency, it is shooting up the Gartner hype cycle to the giddy heights of the peak of inflated expectations before it tumbles down in to the trough of disillusionment
Accelerometer data reduction : a comparison of four reduction algorithms on select outcome variables
Resumo:
Purpose Accelerometers are recognized as a valid and objective tool to assess free-living physical activity. Despite the widespread use of accelerometers, there is no standardized way to process and summarize data from them, which limits our ability to compare results across studies. This paper a) reviews decision rules researchers have used in the past, b) compares the impact of using different decision rules on a common data set, and c) identifies issues to consider for accelerometer data reduction. Methods The methods sections of studies published in 2003 and 2004 were reviewed to determine what decision rules previous researchers have used to identify wearing period, minimal wear requirement for a valid day, spurious data, number of days used to calculate the outcome variables, and extract bouts of moderate to vigorous physical activity (MVPA). For this study, four data reduction algorithms that employ different decision rules were used to analyze the same data set. Results The review showed that among studies that reported their decision rules, much variability was observed. Overall, the analyses suggested that using different algorithms impacted several important outcome variables. The most stringent algorithm yielded significantly lower wearing time, the lowest activity counts per minute and counts per day, and fewer minutes of MVPA per day. An exploratory sensitivity analysis revealed that the most stringent inclusion criterion had an impact on sample size and wearing time, which in turn affected many outcome variables. Conclusions These findings suggest that the decision rules employed to process accelerometer data have a significant impact on important outcome variables. Until guidelines are developed, it will remain difficult to compare findings across studies
Resumo:
Accurate and detailed measurement of an individual's physical activity is a key requirement for helping researchers understand the relationship between physical activity and health. Accelerometers have become the method of choice for measuring physical activity due to their small size, low cost, convenience and their ability to provide objective information about physical activity. However, interpreting accelerometer data once it has been collected can be challenging. In this work, we applied machine learning algorithms to the task of physical activity recognition from triaxial accelerometer data. We employed a simple but effective approach of dividing the accelerometer data into short non-overlapping windows, converting each window into a feature vector, and treating each feature vector as an i.i.d training instance for a supervised learning algorithm. In addition, we improved on this simple approach with a multi-scale ensemble method that did not need to commit to a single window size and was able to leverage the fact that physical activities produced time series with repetitive patterns and discriminative features for physical activity occurred at different temporal scales.
Resumo:
Background Accelerometers have become one of the most common methods of measuring physical activity (PA). Thus, validity of accelerometer data reduction approaches remains an important research area. Yet, few studies directly compare data reduction approaches and other PA measures in free-living samples. Objective To compare PA estimates provided by 3 accelerometer data reduction approaches, steps, and 2 self-reported estimates: Crouter's 2-regression model, Crouter's refined 2-regression model, the weighted cut-point method adopted in the National Health and Nutrition Examination Survey (NHANES; 2003-2004 and 2005-2006 cycles), steps, IPAQ, and 7-day PA recall. Methods A worksite sample (N = 87) completed online-surveys and wore ActiGraph GT1M accelerometers and pedometers (SW-200) during waking hours for 7 consecutive days. Daily time spent in sedentary, light, moderate, and vigorous intensity activity and percentage of participants meeting PA recommendations were calculated and compared. Results Crouter's 2-regression (161.8 +/- 52.3 minutes/day) and refined 2-regression (137.6 +/- 40.3 minutes/day) models provided significantly higher estimates of moderate and vigorous PA and proportions of those meeting PA recommendations (91% and 92%, respectively) as compared with the NHANES weighted cut-point method (39.5 +/- 20.2 minutes/day, 18%). Differences between other measures were also significant. Conclusions When comparing 3 accelerometer cut-point methods, steps, and self-report measures, estimates of PA participation vary substantially.
Resumo:
Design process phases of development, evaluation and implementation were used to create a garment to simultaneously collect reliable data of speech production and intensity of movement of toddlers (18-36 months). A series of prototypes were developed and evaluated that housed accelerometer-based motion sensors and a digital transmitter with microphone. The approved test garment was a top constructed from loop-faced fabric with interior pockets to house devices. Extended side panels allowed for sizing. In total, 56 toddlers (28 male; 28 female; 16-36 months of age) participated in the study providing pilot and baseline data. The test garment was effective in collecting data as evaluated for accuracy and reliability using ANOVA for accelerometer data, transcription of video for type of movement, and number and length of utterances for speech production. The data collection garment has been implemented in various studies across disciplines.
Resumo:
Assurance of learning (AOL) is a quality enhancement and quality assurance process used in higher education. It involves a process of determining programme learning outcomes and standards, and systematically gathering evidence to measure students' performance on these. The systematic assessment of whole-of-programme outcomes provides a basis for curriculum development and management, continuous improvement, and accreditation. To better understand how AOL processes operate, a national study of university practices across one discipline area, business and management, was undertaken. To solicit data on AOL practice, interviews were undertaken with a sample of business school representatives (n = 25). Two key processes emerged: (1) mapping of graduate attributes and (2) collection of assurance data. External drivers such as professional accreditation and government legislation were the primary reasons for undertaking AOL outcomes but intrinsic motivators in relation to continuous improvement were also evident. The facilitation of academic commitment was achieved through an embedded approach to AOL by the majority of universities in the study. A sustainable and inclusive process of AOL was seen to support wider stakeholder engagement in the development of higher education learning outcomes.
Resumo:
Mortality following hip arthroplasty is affected by a large number of confounding variables each of which must be considered to enable valid interpretation. Relevant variables available from the 2011 NJR data set were included in the Cox model. Mortality rates in hip arthroplasty patients were lower than in the age-matched population across all hip types. Age at surgery, ASA grade, diagnosis, gender, provider type, hip type and lead surgeon grade all had a significant effect on mortality. Schemper's statistic showed that only 18.98% of the variation in mortality was explained by the variables available in the NJR data set. It is inappropriate to use NJR data to study an outcome affected by a multitude of confounding variables when these cannot be adequately accounted for in the available data set.
Resumo:
Loop detectors are widely used on the motorway networks where they provide point speed and traffic volumes. Models have been proposed for temporal and spatial generalization of speed for average travel time estimation. Advancement in technology provides complementary data sources such as Bluetooth MAC Scanner (BMS), detecting the MAC ID of the Bluetooth devices transported by the traveller. Matching the data from two BMS stations provides individual vehicle travel time. Generally, on the motorways loops are closely spaced, whereas BMS are placed few kilometres apart. In this research, we fuse BMSs and loops data to define the trajectories of the Bluetooth vehicles. The trajectories are utilised to estimate the travel time statistics between any two points along the motorway. The proposed model is tested using simulation and validated with real data from Pacific motorway, Brisbane. Comparing the model with the linear interpolation based trajectory provides significant improvements.
Resumo:
Public Transport Travel Time Variability (PTTV) is essential for understanding the deteriorations in the reliability of travel time, optimizing transit schedules and route choices. This paper establishes the key definitions of PTTV in which firstly include all buses, and secondly include only a single service from a bus route. The paper then analyzes the day-to-day distribution of public transport travel time by using Transit Signal Priority data. A comprehensive approach, using both parametric bootstrapping Kolmogorov-Smirnov test and Bayesian Information Creation technique is developed, recommends Lognormal distribution as the best descriptor of bus travel time on urban corridors. The probability density function of Lognormal distribution is finally used for calculating probability indicators of PTTV. The findings of this study are useful for both traffic managers and statisticians for planning and analyzing the transit systems.
Resumo:
One cannot help but be impressed by the inroads that digital oilfield technologies have made into the exploration and production (E&P) industry in the past decade. Today’s production systems can be monitored by “smart” sensors that allow engineers to observe almost any aspect of performance in real time. Our understanding of how reservoirs are behaving has improved considerably since the dawn of this revolution, and the industry has been able to move away from point answers to more holistic “big picture” integrated solutions. Indeed, the industry has already reaped the rewards of many of these kinds of investments. Many billions of dollars of value have been delivered by this heightened awareness of what is going on within our assets and the world around them (Van Den Berg et al. 2010).
Resumo:
Numerous initiatives have been employed around the world in order to address rising greenhouse gas (GHG) emissions originating from the transport sector. These measures include: travel demand management (congestion‐charging), increased fuel taxes, alternative fuel subsidies and low‐emission vehicle (LEV) rebates. Incentivizing the purchase of LEVs has been one of the more prevalent approaches in attempting to tackle this global issue. LEVs, whilst having the advantage of lower emissions and, in some cases, more efficient fuel consumption, also bring the downsides of increased purchase cost, reduced convenience of vehicle fuelling, and operational uncertainty. To stimulate demand in the face of these challenges, various incentive‐based policies, such as toll exemptions, have been used by national and local governments to encourage the purchase of these types of vehicles. In order to address rising GHG emissions in Stockholm, and in line with the Swedish Government’s ambition to operate a fossil free fleet by 2030, a number of policies were implemented targeting the transport sector. Foremost amongst these was the combination of a congestion charge – initiated to discourage emissions‐intensive travel – and an exemption from this charge for some LEVs, established to encourage a transition towards a ‘green’ vehicle fleet. Although both policies shared the aim of reducing GHG emissions, the exemption for LEVs carried the risk of diminishing the effectiveness of the congestion charging scheme. As the number of vehicle owners choosing to transition to an eligible LEV increased, the congestion‐reduction effectiveness of the charging scheme weakened. In fact, policy makers quickly recognized this potential issue and consequently phased out the LEV exemption less than 18 months after its introduction (1). Several studies have investigated the demand for LEVs through stated‐preference (SP) surveys across multiple countries, including: Denmark (2), Germany (3, 4), UK (5), Canada (6), USA (7, 8) and Australia (9). Although each of these studies differed in approach, all involved SP surveys where differing characteristics between various types of vehicles, including LEVs, were presented to respondents and these respondents in turn made hypothetical decisions about which vehicle they would be most likely to purchase. Although these studies revealed a number of interesting findings in regards to the potential demand for LEVs, they relied on SP data. In contrast, this paper employs an approach where LEV choice is modelled by taking a retrospective view and by using revealed preference (RP) data. By examining the revealed preferences of vehicle owners in Stockholm, this study overcomes one of the principal limitations of SP data, namely that stated preferences may not in fact reflect individuals’ actual choices, such as when cost, time, and inconvenience factors are real rather than hypothetical. This paper’s RP approach involves modelling the characteristics of individuals who purchased new LEVs, whilst estimating the effect of the congestion charging exemption upon choice probabilities and subsequent aggregate demand. The paper contributes to the current literature by examining the effectiveness of a toll exemption under revealed preference conditions, and by assessing the total effect of the policy based on key indicators for policy makers, including: vehicle owner home location, commuting patterns, number of children, age, gender and income. Extended Abstract Submission for Kuhmo Nectar Conference 2014 2 The two main research questions motivating this study were: Which individuals chose to purchase a new LEV in Stockholm in 2008?; and, How did the congestion charging exemption affect the aggregate demand for new LEVs in Stockholm in 2008? In order to answer these research questions the analysis was split into two stages. Firstly, a multinomial logit (MNL) model was used to identify which demographic characteristics were most significantly related to the purchase of an LEV over a conventional vehicle. The three most significant variables were found to be: intra‐cordon residency (positive); commuting across the cordon (positive); and distance of residence from the cordon (negative). In order to estimate the effect of the exemption policy on vehicle purchase choice, the model included variables to control for geographic differences in preferences, based on the location of the vehicle owners’ homes and workplaces in relation to the congestion‐charging cordon boundary. These variables included one indicator representing commutes across the cordon and another indicator representing intra‐cordon residency. The effect of the exemption policy on the probability of purchasing LEVs was estimated in the second stage of the analysis by focusing on the groups of vehicle owners that were most likely to have been affected by the policy i.e. those commuting across the cordon boundary (in both directions). Given the inclusion of the indicator variable representing commutes across the cordon, it is assumed that the estimated coefficient of this variable captures the effect of the exemption policy on the utility of choosing to purchase an exempt LEV for these two groups of vehicle owners. The intra‐cordon residency indicator variable also controls for differences between the two groups, based upon direction of travel across the cordon boundary. A counter‐hypothesis to this assumption is that the coefficient of the variable representing commuting across the cordon boundary instead only captures geo‐demographic differences that lead to variations in LEV ownership across the different groups of vehicle owners in relation to the cordon boundary. In order to address this counter‐hypothesis, an additional analysis was performed on data from a city with a similar geodemographic pattern to Stockholm, Gothenburg ‐ Sweden’s second largest city. The results of this analysis provided evidence to support the argument that the coefficient of the variable representing commutes across the cordon was capturing the effect of the exemption policy. Based upon this framework, the predicted vehicle type shares were calculated using the estimated coefficients of the MNL model and compared with predicted vehicle type shares from a simulated scenario where the exemption policy was inactive. This simulated scenario was constructed by setting the coefficient for the variable representing commutes across the cordon boundary to zero for all observations to remove the utility benefit of the exemption policy. Overall, the procedure of this second stage of the analysis led to results showing that the exemption had a substantial effect upon the probability of purchasing and aggregate demand for exempt LEVs in Stockholm during 2008. By making use of unique evidence of revealed preferences of LEV owners, this study identifies the common characteristics of new LEV owners and estimates the effect of Stockholm's congestion charging exemption upon the demand for new LEVs during 2008. It was found that the variables that had the greatest effect upon the choice of purchasing an exempt LEV included intra‐cordon residency (positive), distance of home from the cordon (negative), and commuting across the cordon (positive). It was also determined that owners under the age of 30 years preferred non‐exempt LEVs (low CO2 LEVs), whilst those over the age of 30 years preferred electric vehicles. In terms of electric vehicles, it was apparent that those individuals living within the city had the highest propensity towards purchasing this vehicle type. A negative relationship between choosing an electric vehicle and the distance of an individuals’ residency from the cordon was also evident. Overall, the congestion charging exemption was found to have increased the share of exempt LEVs in Stockholm by 1.9%, with, as expected, a much stronger effect on those commuting across the boundary, with those living inside the cordon having a 13.1% increase, and those owners living outside the cordon having a 5.0% increase. This increase in demand corresponded to an additional 538 (+/‐ 93; 95% C.I.) new exempt LEVs purchased in Stockholm during 2008 (out of a total of 5 427; 9.9%). Policy makers can take note that an incentive‐based policy can increase the demand for LEVs and appears to be an appropriate approach to adopt when attempting to reduce transport emissions through encouraging a transition towards a ‘green’ vehicle fleet.