730 resultados para IEEE
Resumo:
In this work, we present the development of a Pt/graphene/SiC device for hydrogen gas sensing. A single layer of graphene was deposited on 6H-SiC via chemical vapor deposition. The presence of graphene C-C bonds was observed via X-ray photoelectron spectroscopy analysis. Current-voltage characteristics of the device were measured at the presence of hydrogen at different temperatures, from 25°C to 170°C. The dynamic response of the device was recorded towards hydrogen gas at an optimum temperature of 130°C. A voltage shift of 191 mV was recorded towards 1% hydrogen at −1 mA constant current.
Resumo:
This paper discusses human factors issues of low cost railway level crossings in Australia. Several issues are discussed in this paper including safety at passive level railway crossings, human factors considerations associated with unavailability of a warning device, and a conceptual model for how safety could be compromised at railway level crossings following prolonged or frequent unavailability. The research plans to quantify safety risk to motorists at level crossings using a Human Reliability Assessment (HRA) method, supported by data collected using an advanced driving simulator. This method aims to identify human error within tasks and task units identified as part of the task analysis process. It is anticipated that by modelling driver behaviour the current study will be able to quantify meaningful task variability including temporal parameters, between participants and within participants. The process of complex tasks such as driving through a level crossing is fundamentally context-bound. Therefore this study also aims to quantify those performance-shaping factors that contribute to vehicle train collisions by highlighting changes in the task units and driver physiology. Finally we will also consider a number of variables germane to ensuring external validity of our results. Without this inclusion, such an analysis could seriously underestimate risk.
Resumo:
Six Sigma is considered to be an important management philosophy to obtain satisfied customers. But financial service organisations have been slow to adopt Six Sigma issues so far. Despite the extensive effort that has been invested and benefits that can be obtained, the systematic implementation of Six Sigma in financial service organisations is limited. As a company wide implementation framework is missing so far, this paper tries to fill this gap. Based on theory, a conceptual framework is developed and evaluated by experts from financial institutions. The results show that it is very important to link Six Sigma with the strategic as well as the operations level. Furthermore, although Six Sigma is a very important method for improving quality of processes others such as Lean Management are also used This requires a superior project portfolio management to coordinate resources and projects of Six Sigma with the other methods used. Beside the theoretical contribution, the framework can be used by financial service companies to evaluate their Six Sigma activities. Thus, the framework grounded through literature and empirical data will be a useful guide for sustainable and successful implementation of a Six Sigma initiative in financial service organisations.
Resumo:
Various time-memory tradeoffs attacks for stream ciphers have been proposed over the years. However, the claimed success of these attacks assumes the initialisation process of the stream cipher is one-to-one. Some stream cipher proposals do not have a one-to-one initialisation process. In this paper, we examine the impact of this on the success of time-memory-data tradeoff attacks. Under the circumstances, some attacks are more successful than previously claimed while others are less. The conditions for both cases are established.
Resumo:
Non-invasive vibration analysis has been used extensively to monitor the progression of dental implant healing and stabilization. It is now being considered as a method to monitor femoral implants in transfemoral amputees. This paper evaluates two modal analysis excitation methods and investigates their capabilities in detecting changes at the interface between the implant and the bone that occur during osseointegration. Excitation of bone-implant physical models with the electromagnetic shaker provided higher coherence values and a greater number of modes over the same frequency range when compared to the impact hammer. Differences were detected in the natural frequencies and fundamental mode shape of the model when the fit of the implant was altered in the bone. The ability to detect changes in the model dynamic properties demonstrates the potential of modal analysis in this application and warrants further investigation.
Resumo:
This paper introduces our research on influencing the experience of people in urban public places through mobile mediated interactions. Information and communication technology (ICT) devices are sometimes used to create personal space while in public. ICT devices could also be utilised to digitally augment the urban space with non-privacy sensitive data enabling mobile mediated interactions in an anonymous way between collocated strangers. We present what motivates the research on digital augmentations and mobile mediated interactions between unknown urban dwellers, define the research problem that drives this study and why it is significant research in the field of pervasive social networking. The paper illustrates three design interventions enabling social pervasive content sharing and employing pervasive presence, awareness and anonymous social user interaction in urban public places. The paper concludes with an outlook and summarises the research effort.
Resumo:
A new relationship type of social networks - online dating - are gaining popularity. With a large member base, users of a dating network are overloaded with choices about their ideal partners. Recommendation methods can be utilized to overcome this problem. However, traditional recommendation methods do not work effectively for online dating networks where the dataset is sparse and large, and a two-way matching is required. This paper applies social networking concepts to solve the problem of developing a recommendation method for online dating networks. We propose a method by using clustering, SimRank and adapted SimRank algorithms to recommend matching candidates. Empirical results show that the proposed method can achieve nearly double the performance of the traditional collaborative filtering and common neighbor methods of recommendation.
Resumo:
The Lingodroids are a pair of mobile robots that evolve a language for places and relationships between places (based on distance and direction). Each robot in these studies has its own understanding of the layout of the world, based on its unique experiences and exploration of the environment. Despite having different internal representations of the world, the robots are able to develop a common lexicon for places, and then use simple sentences to explain and understand relationships between places even places that they could not physically experience, such as areas behind closed doors. By learning the language, the robots are able to develop representations for places that are inaccessible to them, and later, when the doors are opened, use those representations to perform goal-directed behavior.
Resumo:
Pedestrians’ use of mp3 players or mobile phones can pose the risk of being hit by motor vehicles. We present an approach for detecting a crash risk level using the computing power and the microphone of mobile devices that can be used to alert the user in advance of an approaching vehicle so as to avoid a crash. A single feature extractor classifier is not usually able to deal with the diversity of risky acoustic scenarios. In this paper, we address the problem of detection of vehicles approaching a pedestrian by a novel, simple, non resource intensive acoustic method. The method uses a set of existing statistical tools to mine signal features. Audio features are adaptively thresholded for relevance and classified with a three component heuristic. The resulting Acoustic Hazard Detection (AHD) system has a very low false positive detection rate. The results of this study could help mobile device manufacturers to embed the presented features into future potable devices and contribute to road safety.
Resumo:
Thermal-infrared images have superior statistical properties compared with visible-spectrum images in many low-light or no-light scenarios. However, a detailed understanding of feature detector performance in the thermal modality lags behind that of the visible modality. To address this, the first comprehensive study on feature detector performance on thermal-infrared images is conducted. A dataset is presented which explores a total of ten different environments with a range of statistical properties. An investigation is conducted into the effects of several digital and physical image transformations on detector repeatability in these environments. The effect of non-uniformity noise, unique to the thermal modality, is analyzed. The accumulation of sensor non-uniformities beyond the minimum possible level was found to have only a small negative effect. A limiting of feature counts was found to improve the repeatability performance of several detectors. Most other image transformations had predictable effects on feature stability. The best-performing detector varied considerably depending on the nature of the scene and the test.
Resumo:
Recent algorithms for monocular motion capture (MoCap) estimate weak-perspective camera matrices between images using a small subset of approximately-rigid points on the human body (i.e. the torso and hip). A problem with this approach, however, is that these points are often close to coplanar, causing canonical linear factorisation algorithms for rigid structure from motion (SFM) to become extremely sensitive to noise. In this paper, we propose an alternative solution to weak-perspective SFM based on a convex relaxation of graph rigidity. We demonstrate the success of our algorithm on both synthetic and real world data, allowing for much improved solutions to marker less MoCap problems on human bodies. Finally, we propose an approach to solve the two-fold ambiguity over bone direction using a k-nearest neighbour kernel density estimator.
Resumo:
We propose an approach to employ eigen light-fields for face recognition across pose on video. Faces of a subject are collected from video frames and combined based on the pose to obtain a set of probe light-fields. These probe data are then projected to the principal subspace of the eigen light-fields within which the classification takes place. We modify the original light-field projection and found that it is more robust in the proposed system. Evaluation on VidTIMIT dataset has demonstrated that the eigen light-fields method is able to take advantage of multiple observations contained in the video.
Resumo:
Organizations seeking improvements in their performance are increasingly exploring alternative models and approaches for providing support services; one such approach being Shared Services. Because of the possible consequential impact of Shared Services on organizations, and given that information systems (IS) is both an enabler of Shared Services (for other functional areas) as well as a promising area for Shared Services application, Shared Services is an important area for research in the IS field. Though Shared Services has been extensively adopted on the promise of economies of scale and scope, factors of Shared Services success (or failure) have received little research attention. This paper reports the distillation of success and failure factors of Shared Services from an IS perspective. Employing NVIVO and content analysis of 158 selected articles, 9 key success factors and 5 failure factors are identified, suggesting important implications for practice and further research.
Resumo:
Autonomous guidance of agricultural vehiclesis vital as mechanized farming production becomes more prevalent. It is crucial that tractor-trailers are guided with accuracy in both lateral and longitudinal directions, whilst being affected by large disturbance forces, or slips, owing to uncertain and undulating terrain. Successful research has been concentrated on trajectory control which can provide longitudinal and lateral accuracy if the vehicle moves without sliding, and the trailer is passive. In this paper, the problem of robust trajectory tracking along straight and circular paths of a tractor-steerable trailer is addressed. By utilizing a robust combination of backstepping and nonlinear PI control, a robust, nonlinear controller is proposed. For vehicles subjected to sliding, the proposed controller makes the lateral deviations and the orientation errors of the tractor and trailer converge to a neighborhood near the origin. Simulation results are presented to illustrate that the suggested controller ensures precise trajectory tracking in the presence of slip.