756 resultados para Performance failure
Resumo:
We conducted an exploratory study of a mobile energy monitoring tool: The Dashboard. Our point of departure from prior work was the emphasis of end-user customisation and social sharing. Applying extensive feedback, we deployed the Dashboard in real-world conditions to socially linked research participants for a period of five weeks. Participants were encouraged to devise, construct, place, and view various data feeds. The aim of our study was to test the assumption that participants, having control over their Dashboard configuration, would engage, and remain engaged, with their energy feedback throughout the trial. Our research points to a set of design issues surrounding the adoption and continued use of such tools. A novel finding of our study is the impact of social links between participants and their continued engagement with the Dashboard. Our results also illustrate the emergence of energy-voyeurism, a form of social energy monitoring by peers.
Resumo:
The sugar industry is pursuing diversification options using bagasse as a feedstock. Depithing, the removal of the smaller bagasse particles, is an integral part of the manufacturing processes for bagasse by-products such as pulp and paper. There are possible environmental and economic benefits associated with incorporating depithing operations into a sugar factory. However there have only been limited investigations into the effects of depithing operations on a sugar factory boiler station. This paper describes a modelling investigation, using the lumped parameter boiler design tool BOILER and the CFD code FURNACE, to predict the effects of pith, depithed bagasse and mixed bagasse/pith firing on the efficiency, fuel consumption and combustion performance of a typical sugar factory boiler.
Resumo:
Urban transit system performance may be quantified and assessed using transit capacity and productive capacity for planning, design and operational management. Bunker (4) defines important productive performance measures of an individual transit service and transit line. Transit work (p-km) captures transit task performed over distance. Transit productiveness (p-km/h) captures transit work performed over time. This paper applies productive performance with risk assessment to quantify transit system reliability. Theory is developed to monetize transit segment reliability risk on the basis of demonstration Annual Reliability Event rates by transit facility type, segment productiveness, and unit-event severity. A comparative example of peak hour performance of a transit sub-system containing bus-on-street, busway, and rail components in Brisbane, Australia demonstrates through practical application the importance of valuing reliability. Comparison reveals the highest risk segments to be long, highly productive on street bus segments followed by busway (BRT) segments and then rail segments. A transit reliability risk reduction treatment example demonstrates that benefits can be significant and should be incorporated into project evaluation in addition to those of regular travel time savings, reduced emissions and safety improvements. Reliability can be used to identify high risk components of the transit system and draw comparisons between modes both in planning and operations settings, and value improvement scenarios in a project evaluation setting. The methodology can also be applied to inform daily transit system operational management.
Resumo:
Urban transit system performance may be quantified and assessed using transit capacity and productive capacity for planning, design and operational management. Bunker (4) defines important productive performance measures of an individual transit service and transit line. Transit work (p-km) captures transit task performed over distance. Transit productiveness (p-km/h) captures transit work performed over time. This paper applies productive performance with risk assessment to quantify transit system reliability. Theory is developed to monetize transit segment reliability risk on the basis of demonstration Annual Reliability Event rates by transit facility type, segment productiveness, and unit-event severity. A comparative example of peak hour performance of a transit sub-system containing bus-on-street, busway, and rail components in Brisbane, Australia demonstrates through practical application the importance of valuing reliability. Comparison reveals the highest risk segments to be long, highly productive on street bus segments followed by busway (BRT) segments and then rail segments. A transit reliability risk reduction treatment example demonstrates that benefits can be significant and should be incorporated into project evaluation in addition to those of regular travel time savings, reduced emissions and safety improvements. Reliability can be used to identify high risk components of the transit system and draw comparisons between modes both in planning and operations settings, and value improvement scenarios in a project evaluation setting. The methodology can also be applied to inform daily transit system operational management.
Resumo:
In May 2011, the Centre for Crime and Justice Studies published Lessons for the Coalition: an end of term report on New Labour and Criminal Justice (Silvestri, 2011). In that collection I described Labour's performance on environmental issues as ‘too little too late’. The UK experienced a period of Blair/Brown environmental governance that demonstrated ‘symbolic success but real failure’. Amongst New Labour's environmental achievements were the establishment of the Climate Change Act 2008, the creation of the Department of Energy and Climate Change and the establishment of numerous green quangos to oversee and implement a range of environmental policies. However, these steps forward were seemingly threatened by the early days of a Cameron-led coalition where austerity measure, trade and the abolition of green quangos were on the cards. In sum, I concluded ‘future UK government report cards on the environment do not look good’ (Walters, 2011). After two and half years of a Conservative/Liberal Democratic coalition, and much rhetoric about it being ‘the greenest government ever’, the interim report card for the Cameron government on environmental matters is grim reading indeed. The demise of green quangos, record carbon emissions, renewable energies policies stultified, environmental criminality and victimisation all but ignored, and billions of pounds lost to environmental corporate fraudsters are just some of the headlines of Tory inspired governance with much environmental rhetoric and no environmental results.
Resumo:
Preventive Maintenance (PM) is often applied to improve the reliability of production lines. A Split System Approach (SSA) based methodology is presented to assist in making optimal PM decisions for serial production lines. The methodology treats a production line as a complex series system with multiple (imperfect) PM actions over multiple intervals. The conditional and overall reliability of the entire production line over these multiple PM intervals are hierarchically calculated using SSA, and provide a foundation for cost analysis. Both risk-related cost and maintenance-related cost are factored into the methodology as either deterministic or random variables. This SSA based methodology enables Asset Management (AM) decisions to be optimised considering a variety of factors including failure probability, failure cost, maintenance cost, PM performance, and the type of PM strategy. The application of this new methodology and an evaluation of the effects of these factors on PM decisions are demonstrated using an example. The results of this work show that the performance of a PM strategy can be measured by its Total Expected Cost Index (TECI). The optimal PM interval is dependent on TECI, PM performance and types of PM strategies. These factors are interrelated. Generally, it was found that a trade-off between reliability and the number of PM actions needs to be made so that one can minimise Total Expected Cost (TEC) for asset maintenance.
Resumo:
It is trite law that a lawyer owes their client a duty of care requiring the lawyer to take reasonable steps to avoid their client suffering foreseeable economiic loss: Hawkins v Clayton. In the context of a property transaction this will include a duty to warn the client of anything that is unusual or anything which may affect the client obtaining the full benefit of the contract entered into: Macindoe v Parbery.
Resumo:
The aftermath of the Queensland floods of January 2011 continues to be played out in the courts. The effect of the floods on such a large scale has awakened the use of some statutory provisions that have not previously been litigated .Section 64 of the Property Law Act 1974 (Qld) is such a section. A version of this provision appears as s 34 of the Sale of Land Act 1982 (Vic). Broadly speaking, these sections permit a buyer of a dwelling house which has been damaged or destroyed between contract and completion to rescind the contract and recover their deposit provided that the rescission notice is given prior to "the date of completion or possession". The Court of Appeal decision of Dunworth v Mirvac Queensland Pty Ltd [2011] QCA 200 appears to be the first litigation upon the application of the section since it came into force in 1975.
Resumo:
The R statistical environment and language has demonstrated particular strengths for interactive development of statistical algorithms, as well as data modelling and visualisation. Its current implementation has an interpreter at its core which may result in a performance penalty in comparison to directly executing user algorithms in the native machine code of the host CPU. In contrast, the C++ language has no built-in visualisation capabilities, handling of linear algebra or even basic statistical algorithms; however, user programs are converted to high-performance machine code, ahead of execution. A new method avoids possible speed penalties in R by using the Rcpp extension package in conjunction with the Armadillo C++ matrix library. In addition to the inherent performance advantages of compiled code, Armadillo provides an easy-to-use template-based meta-programming framework, allowing the automatic pooling of several linear algebra operations into one, which in turn can lead to further speedups. With the aid of Rcpp and Armadillo, conversion of linear algebra centered algorithms from R to C++ becomes straightforward. The algorithms retains the overall structure as well as readability, all while maintaining a bidirectional link with the host R environment. Empirical timing comparisons of R and C++ implementations of a Kalman filtering algorithm indicate a speedup of several orders of magnitude.
Resumo:
Since 2007 Kite Arts Education Program (KITE), based at Queensland Performing Arts Centre (QPAC), has been engaged in delivering a series of theatre-based experiences for children in low socio-economic primary schools in Queensland. The artist in residence (AIR) project titled Yonder includes performances developed by the children with the support and leadership of teacher artists from KITE for their community and parents/carers,supported by a peak community cultural institution. In 2009,Queensland Performing Arts Centre partnered with Queensland University of Technology (QUT) Creative Industries Faculty (Drama) to conduct a three-year evaluation of the Yonder project to understand the operational dynamics, artistic outputs and the educational benefits of the project. This paper outlines the research findings for children engaged in the Yonder project in the interrelated areas of literacy development and social competencies. Findings are drawn from six iterations of the project in suburban locations on the edge of Brisbane city and in regional Queensland.
Resumo:
The ability to estimate the asset reliability and the probability of failure is critical to reducing maintenance costs, operation downtime, and safety hazards. Predicting the survival time and the probability of failure in future time is an indispensable requirement in prognostics and asset health management. In traditional reliability models, the lifetime of an asset is estimated using failure event data, alone; however, statistically sufficient failure event data are often difficult to attain in real-life situations due to poor data management, effective preventive maintenance, and the small population of identical assets in use. Condition indicators and operating environment indicators are two types of covariate data that are normally obtained in addition to failure event and suspended data. These data contain significant information about the state and health of an asset. Condition indicators reflect the level of degradation of assets while operating environment indicators accelerate or decelerate the lifetime of assets. When these data are available, an alternative approach to the traditional reliability analysis is the modelling of condition indicators and operating environment indicators and their failure-generating mechanisms using a covariate-based hazard model. The literature review indicates that a number of covariate-based hazard models have been developed. All of these existing covariate-based hazard models were developed based on the principle theory of the Proportional Hazard Model (PHM). However, most of these models have not attracted much attention in the field of machinery prognostics. Moreover, due to the prominence of PHM, attempts at developing alternative models, to some extent, have been stifled, although a number of alternative models to PHM have been suggested. The existing covariate-based hazard models neglect to fully utilise three types of asset health information (including failure event data (i.e. observed and/or suspended), condition data, and operating environment data) into a model to have more effective hazard and reliability predictions. In addition, current research shows that condition indicators and operating environment indicators have different characteristics and they are non-homogeneous covariate data. Condition indicators act as response variables (or dependent variables) whereas operating environment indicators act as explanatory variables (or independent variables). However, these non-homogenous covariate data were modelled in the same way for hazard prediction in the existing covariate-based hazard models. The related and yet more imperative question is how both of these indicators should be effectively modelled and integrated into the covariate-based hazard model. This work presents a new approach for addressing the aforementioned challenges. The new covariate-based hazard model, which termed as Explicit Hazard Model (EHM), explicitly and effectively incorporates all three available asset health information into the modelling of hazard and reliability predictions and also drives the relationship between actual asset health and condition measurements as well as operating environment measurements. The theoretical development of the model and its parameter estimation method are demonstrated in this work. EHM assumes that the baseline hazard is a function of the both time and condition indicators. Condition indicators provide information about the health condition of an asset; therefore they update and reform the baseline hazard of EHM according to the health state of asset at given time t. Some examples of condition indicators are the vibration of rotating machinery, the level of metal particles in engine oil analysis, and wear in a component, to name but a few. Operating environment indicators in this model are failure accelerators and/or decelerators that are included in the covariate function of EHM and may increase or decrease the value of the hazard from the baseline hazard. These indicators caused by the environment in which an asset operates, and that have not been explicitly identified by the condition indicators (e.g. Loads, environmental stresses, and other dynamically changing environment factors). While the effects of operating environment indicators could be nought in EHM; condition indicators could emerge because these indicators are observed and measured as long as an asset is operational and survived. EHM has several advantages over the existing covariate-based hazard models. One is this model utilises three different sources of asset health data (i.e. population characteristics, condition indicators, and operating environment indicators) to effectively predict hazard and reliability. Another is that EHM explicitly investigates the relationship between condition and operating environment indicators associated with the hazard of an asset. Furthermore, the proportionality assumption, which most of the covariate-based hazard models suffer from it, does not exist in EHM. According to the sample size of failure/suspension times, EHM is extended into two forms: semi-parametric and non-parametric. The semi-parametric EHM assumes a specified lifetime distribution (i.e. Weibull distribution) in the form of the baseline hazard. However, for more industry applications, due to sparse failure event data of assets, the analysis of such data often involves complex distributional shapes about which little is known. Therefore, to avoid the restrictive assumption of the semi-parametric EHM about assuming a specified lifetime distribution for failure event histories, the non-parametric EHM, which is a distribution free model, has been developed. The development of EHM into two forms is another merit of the model. A case study was conducted using laboratory experiment data to validate the practicality of the both semi-parametric and non-parametric EHMs. The performance of the newly-developed models is appraised using the comparison amongst the estimated results of these models and the other existing covariate-based hazard models. The comparison results demonstrated that both the semi-parametric and non-parametric EHMs outperform the existing covariate-based hazard models. Future research directions regarding to the new parameter estimation method in the case of time-dependent effects of covariates and missing data, application of EHM in both repairable and non-repairable systems using field data, and a decision support model in which linked to the estimated reliability results, are also identified.