700 resultados para Data reporting
Resumo:
Transit passenger market segmentation enables transit operators to target different classes of transit users to provide customized information and services. The Smart Card (SC) data, from Automated Fare Collection system, facilitates the understanding of multiday travel regularity of transit passengers, and can be used to segment them into identifiable classes of similar behaviors and needs. However, the use of SC data for market segmentation has attracted very limited attention in the literature. This paper proposes a novel methodology for mining spatial and temporal travel regularity from each individual passenger’s historical SC transactions and segments them into four segments of transit users. After reconstructing the travel itineraries from historical SC transactions, the paper adopts the Density-Based Spatial Clustering of Application with Noise (DBSCAN) algorithm to mine travel regularity of each SC user. The travel regularity is then used to segment SC users by an a priori market segmentation approach. The methodology proposed in this paper assists transit operators to understand their passengers and provide them oriented information and services.
Resumo:
Over the past decade, vision-based tracking systems have been successfully deployed in professional sports such as tennis and cricket for enhanced broadcast visualizations as well as aiding umpiring decisions. Despite the high-level of accuracy of the tracking systems and the sheer volume of spatiotemporal data they generate, the use of this high quality data for quantitative player performance and prediction has been lacking. In this paper, we present a method which predicts the location of a future shot based on the spatiotemporal parameters of the incoming shots (i.e. shot speed, location, angle and feet location) from such a vision system. Having the ability to accurately predict future short-term events has enormous implications in the area of automatic sports broadcasting in addition to coaching and commentary domains. Using Hawk-Eye data from the 2012 Australian Open Men's draw, we utilize a Dynamic Bayesian Network to model player behaviors and use an online model adaptation method to match the player's behavior to enhance shot predictability. To show the utility of our approach, we analyze the shot predictability of the top 3 players seeds in the tournament (Djokovic, Federer and Nadal) as they played the most amounts of games.
Resumo:
Background Occupational exposures of health care workers occur because of inconsistent compliance with standard precautions. The purpose of this study was to develop national estimates of compliance with standard precautions and occupational exposure reporting among operating room nurses (specifically, scrub nurses) in Australia and to assess variables that influence compliance. Methods A descriptive correlation design was used to investigate relationships between variables and compliance, using a theoretical framework, the Health Belief Model, to give meaning to the variables. Data collection was done through mail-out surveys to members of the Australian College of Operating Room Nurses. Results This article reports the results of compliance with the following 2 specific self-protective behaviors: double-gloving and wearing adequate eye protection. Mean compliance rates were 55.6% with always double-gloving during surgical procedures and 92% with always wearing adequate eye protection. In addition, the variable that had the most influence on compliance was the perception of barriers to compliance, specifically, that adhering to standard precautions interfered with duties. Conclusion These results have implications for the development of multifaceted perioperative infection control programs, including strategies for prevention, education, and policy development, to improve practices aimed at reducing occupational exposures among this high-risk group.
Resumo:
Statistics on health care workers' occupational exposures to bloodborne pathogens underestimate the true extent of the problem because of a tendency for underreporting. A descriptive correlational design was used to investigate compliance with standard precautions and occupational exposure reporting practices among perioperative nurses in Australia. The study found that although intention to report both percutaneous and mucocutaneous exposures was relatively high, mean compliance rates for actually reporting exposures incurred were considerably lower. The perception of barriers to reporting significantly influenced compliance.
Resumo:
Technological advances have led to an influx of affordable hardware that supports sensing, computation and communication. This hardware is increasingly deployed in public and private spaces, tracking and aggregating a wealth of real-time environmental data. Although these technologies are the focus of several research areas, there is a lack of research dealing with the problem of making these capabilities accessible to everyday users. This thesis represents a first step towards developing systems that will allow users to leverage the available infrastructure and create custom tailored solutions. It explores how this notion can be utilized in the context of energy monitoring to improve conventional approaches. The project adopted a user-centered design process to inform the development of a flexible system for real-time data stream composition and visualization. This system features an extensible architecture and defines a unified API for heterogeneous data streams. Rather than displaying the data in a predetermined fashion, it makes this information available as building blocks that can be combined and shared. It is based on the insight that individual users have diverse information needs and presentation preferences. Therefore, it allows users to compose rich information displays, incorporating personally relevant data from an extensive information ecosystem. The prototype was evaluated in an exploratory study to observe its natural use in a real-world setting, gathering empirical usage statistics and conducting semi-structured interviews. The results show that a high degree of customization does not warrant sustained usage. Other factors were identified, yielding recommendations for increasing the impact on energy consumption.
Resumo:
The study of the relationship between macroscopic traffic parameters, such as flow, speed and travel time, is essential to the understanding of the behaviour of freeway and arterial roads. However, the temporal dynamics of these parameters are difficult to model, especially for arterial roads, where the process of traffic change is driven by a variety of variables. The introduction of the Bluetooth technology into the transportation area has proven exceptionally useful for monitoring vehicular traffic, as it allows reliable estimation of travel times and traffic demands. In this work, we propose an approach based on Bayesian networks for analyzing and predicting the complex dynamics of flow or volume, based on travel time observations from Bluetooth sensors. The spatio-temporal relationship between volume and travel time is captured through a first-order transition model, and a univariate Gaussian sensor model. The two models are trained and tested on travel time and volume data, from an arterial link, collected over a period of six days. To reduce the computational costs of the inference tasks, volume is converted into a discrete variable. The discretization process is carried out through a Self-Organizing Map. Preliminary results show that a simple Bayesian network can effectively estimate and predict the complex temporal dynamics of arterial volumes from the travel time data. Not only is the model well suited to produce posterior distributions over single past, current and future states; but it also allows computing the estimations of joint distributions, over sequences of states. Furthermore, the Bayesian network can achieve excellent prediction, even when the stream of travel time observation is partially incomplete.
Resumo:
Police reported crash data are the primary source of crash information in most jurisdictions. However, the definition of serious injury within police-reported data is not consistent across jurisdictions and may not be accurate. With the Australian National Road Safety Strategy targeting the reduction of serious injuries, there is a greater need to assess the accuracy of the methods used to identify these injuries. A possible source of more accurate information relating to injury severity is hospital data. While other studies have compared police and hospital data to highlight the under-reporting in police-reported data, little attention has been given to the accuracy of the methods used by police to identify serious injuries. The current study aimed to assess how accurate the identification of serious injuries is in police-reported crash data, by comparing the profiles of transport-related injuries in the Queensland Road Crash Database with an aligned sample of data from the Queensland Hospital Admitted Patients Data Collection. Results showed that, while a similar number of traffic injuries were recorded in both data sets, the profile of these injuries was different based on gender, age, location, and road user. The results suggest that the ‘hospitalisation’ severity category used by police may not reflect true hospitalisations in all cases. Further, it highlights the wide variety of severity levels within hospitalised cases that are not captured by the current police-reported definitions. While a data linkage study is required to confirm these results, they highlight that a reliance on police-reported serious traffic injury data alone could result in inaccurate estimates of the impact and cost of crashes and lead to a misallocation of valuable resources.
Resumo:
Social media platforms are of interest to interactive entertainment companies for a number of reasons. They can operate as a platform for deploying games, as a tool for communicating with customers and potential customers, and can provide analytics on how players utilize the; game providing immediate feedback on design decisions and changes. However, as ongoing research with Australian developer Halfbrick, creators of $2 , demonstrates, the use of these platforms is not universally seen as a positive. The incorporation of Big Data into already innovative development practices has the potential to cause tension between designers, whilst the platform also challenges the traditional business model, relying on micro-transactions rather than an up-front payment and a substantial shift in design philosophy to take advantage of the social aspects of platforms such as Facebook.
Resumo:
Big Data presents many challenges related to volume, whether one is interested in studying past datasets or, even more problematically, attempting to work with live streams of data. The most obvious challenge, in a ‘noisy’ environment such as contemporary social media, is to collect the pertinent information; be that information for a specific study, tweets which can inform emergency services or other responders to an ongoing crisis, or give an advantage to those involved in prediction markets. Often, such a process is iterative, with keywords and hashtags changing with the passage of time, and both collection and analytic methodologies need to be continually adapted to respond to this changing information. While many of the data sets collected and analyzed are preformed, that is they are built around a particular keyword, hashtag, or set of authors, they still contain a large volume of information, much of which is unnecessary for the current purpose and/or potentially useful for future projects. Accordingly, this panel considers methods for separating and combining data to optimize big data research and report findings to stakeholders. The first paper considers possible coding mechanisms for incoming tweets during a crisis, taking a large stream of incoming tweets and selecting which of those need to be immediately placed in front of responders, for manual filtering and possible action. The paper suggests two solutions for this, content analysis and user profiling. In the former case, aspects of the tweet are assigned a score to assess its likely relationship to the topic at hand, and the urgency of the information, whilst the latter attempts to identify those users who are either serving as amplifiers of information or are known as an authoritative source. Through these techniques, the information contained in a large dataset could be filtered down to match the expected capacity of emergency responders, and knowledge as to the core keywords or hashtags relating to the current event is constantly refined for future data collection. The second paper is also concerned with identifying significant tweets, but in this case tweets relevant to particular prediction market; tennis betting. As increasing numbers of professional sports men and women create Twitter accounts to communicate with their fans, information is being shared regarding injuries, form and emotions which have the potential to impact on future results. As has already been demonstrated with leading US sports, such information is extremely valuable. Tennis, as with American Football (NFL) and Baseball (MLB) has paid subscription services which manually filter incoming news sources, including tweets, for information valuable to gamblers, gambling operators, and fantasy sports players. However, whilst such services are still niche operations, much of the value of information is lost by the time it reaches one of these services. The paper thus considers how information could be filtered from twitter user lists and hash tag or keyword monitoring, assessing the value of the source, information, and the prediction markets to which it may relate. The third paper examines methods for collecting Twitter data and following changes in an ongoing, dynamic social movement, such as the Occupy Wall Street movement. It involves the development of technical infrastructure to collect and make the tweets available for exploration and analysis. A strategy to respond to changes in the social movement is also required or the resulting tweets will only reflect the discussions and strategies the movement used at the time the keyword list is created — in a way, keyword creation is part strategy and part art. In this paper we describe strategies for the creation of a social media archive, specifically tweets related to the Occupy Wall Street movement, and methods for continuing to adapt data collection strategies as the movement’s presence in Twitter changes over time. We also discuss the opportunities and methods to extract data smaller slices of data from an archive of social media data to support a multitude of research projects in multiple fields of study. The common theme amongst these papers is that of constructing a data set, filtering it for a specific purpose, and then using the resulting information to aid in future data collection. The intention is that through the papers presented, and subsequent discussion, the panel will inform the wider research community not only on the objectives and limitations of data collection, live analytics, and filtering, but also on current and in-development methodologies that could be adopted by those working with such datasets, and how such approaches could be customized depending on the project stakeholders.
Resumo:
This paper analyses the probabilistic linear discriminant analysis (PLDA) speaker verification approach with limited development data. This paper investigates the use of the median as the central tendency of a speaker’s i-vector representation, and the effectiveness of weighted discriminative techniques on the performance of state-of-the-art length-normalised Gaussian PLDA (GPLDA) speaker verification systems. The analysis within shows that the median (using a median fisher discriminator (MFD)) provides a better representation of a speaker when the number of representative i-vectors available during development is reduced, and that further, usage of the pair-wise weighting approach in weighted LDA and weighted MFD provides further improvement in limited development conditions. Best performance is obtained using a weighted MFD approach, which shows over 10% improvement in EER over the baseline GPLDA system on mismatched and interview-interview conditions.