820 resultados para Piling (Civil engineering)


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study explored the dynamic performance of an innovative Hybrid Composite Floor Plate System (HCFPS), composed of Polyurethane (PU) core, outer layers of Glass–fibre Reinforced Cement (GRC) and steel laminates at tensile regions, using experimental testing and Finite Element (FE) modelling. Experimental testing included heel impact and walking tests for 3200 mm span HCFPS panels. FE models of the HCFPS were developed using the FE program ABAQUS and validated with experimental results. HCFPS is a light-weight high frequency floor system with excellent damping ratio of 5% (bare floor) due to the central PU core. Parametric studies were conducted using the validated FE models to investigate the dynamic response of the HCFPS and to identify characteristics that influence acceleration response under human induced vibration in service. This vibration performance was compared with recommended acceptable perceptibility limits. The findings of this study show that HCFPS can be used in residential and office buildings as a light-weight floor system, which does not exceed the perceptible thresholds due to human induced vibrations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Due to the development of XML and other data models such as OWL and RDF, sharing data is an increasingly common task since these data models allow simple syntactic translation of data between applications. However, in order for data to be shared semantically, there must be a way to ensure that concepts are the same. One approach is to employ commonly usedschemas—called standard schemas —which help guarantee that syntactically identical objects have semantically similar meanings. As a result of the spread of data sharing, there has been widespread adoption of standard schemas in a broad range of disciplines and for a wide variety of applications within a very short period of time. However, standard schemas are still in their infancy and have not yet matured or been thoroughly evaluated. It is imperative that the data management research community takes a closer look at how well these standard schemas have fared in real-world applications to identify not only their advantages, but also the operational challenges that real users face. In this paper, we both examine the usability of standard schemas in a comparison that spans multiple disciplines, and describe our first step at resolving some of these issues in our Semantic Modeling System. We evaluate our Semantic Modeling System through a careful case study of the use of standard schemas in architecture, engineering, and construction, which we conducted with domain experts. We discuss how our Semantic Modeling System can help the broader problem and also discuss a number of challenges that still remain.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Construction practitioners often experience unexpected results of their scheduling-related decisions. This is mainly due to lack of understanding of the dynamic nature of construction system. However, very little attention has been given to its significant importance and few empirical studies have been undertaken on this issue. This paper, therefore, analyzes the effect of aggressive scheduling, overtime, resource adding, and schedule slippage on construction performance, focusing on workers’ reactions to those scheduling decisions. Survey data from 102 construction practitioners in 38 construction sites are used for the analysis. The results indicate that efforts to increase work rate by working overtime, resource adding, and aggressive scheduling can be offset due to losses in productivity and quality. Based on the research findings, practical guidelines are then discussed to help site managers to effectively deal with the dynamics of scheduling and improve construction performance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Identifying the design features that impact construction is essential to developing cost effective and constructible designs. The similarity of building components is a critical design feature that affects method selection, productivity, and ultimately construction cost and schedule performance. However, there is limited understanding of what constitutes similarity in the design of building components and limited computer-based support to identify this feature in a building product model. This paper contributes a feature-based framework for representing and reasoning about component similarity that builds on ontological modelling, model-based reasoning and cluster analysis techniques. It describes the ontology we developed to characterize component similarity in terms of the component attributes, the direction, and the degree of variation. It also describes the generic reasoning process we formalized to identify component similarity in a standard product model based on practitioners' varied preferences. The generic reasoning process evaluates the geometric, topological, and symbolic similarities between components, creates groupings of similar components, and quantifies the degree of similarity. We implemented this reasoning process in a prototype cost estimating application, which creates and maintains cost estimates based on a building product model. Validation studies of the prototype system provide evidence that the framework is general and enables a more accurate and efficient cost estimating process.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

between mid 2010 and early 2011, Queensland road related infrastructures were devastated by flood and cyclone related natural disasters. Responding to these recent events and in preparing for more regular and intense climate-change induced events in future, the Queensland Government is now reviewing how post-disaster road infrastructure recovery projects are planned and delivered. In particular, there is awareness that rebuilding such infrastructure need sustainable strategies across economic, environmental and social dimensions. A comprehensive sustainability assessment framework for pre and post disaster situations can minimize negative impact on our communities, economy and environment. This research is underway to develop a comprehensive sustainability element frame work for post disaster management in road infrastructures in Queensland, Australia. Analyzing the implications of disruption to transport network and associated services is an important part of preparing local and regional responses to the impacts of natural disasters. This research can contribute to strategic planning, management leading to safe, efficient and integrated transport system that supports sustainable economic, social and environmental outcomes in Queensland. Within this context, this paper provides an overview of the qualitative mixed-method research approach involving literature reviews and case studies to explore and evaluate a number of sustainability elements with a view to develop operational strategies for disaster recovery road projects.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In recent years, there has been a growing interest from the design and construction community to adopt Building Information Models (BIM). BIM provides semantically-rich information models that explicitly represent both 3D geometric information (e.g., component dimensions), along with non-geometric properties (e.g., material properties). While the richness of design information offered by BIM is evident, there are still tremendous challenges in getting construction-specific information out of BIM, limiting the usability of these models for construction. In this paper, we describe our approach for extracting construction-specific design conditions from a BIM model based on user-defined queries. This approach leverages an ontology of features we are developing to formalize the design conditions that affect construction. Our current implementation analyzes the component geometry and topological relationships between components in a BIM model represented using the Industry Foundation Classes (IFC) to identify construction features. We describe the reasoning process implemented to extract these construction features, and provide a critique of the IFC’s to support the querying process. We use examples from two case studies to illustrate the construction features, the querying process, and the challenges involved in deriving construction features from an IFC model.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Accelerating a project can be rewarding. The consequences, however, can be troublesome if productivity and quality are sacrificed for the sake of remaining ahead of schedule, such that the actual schedule benefits are often barely worth the effort. The tradeoffs and paths of schedule pressure and its causes and effects are often overlooked when schedule decisions are being made. This paper analyses the effects that schedule pressure has on construction performance, and focuses on tradeoffs in scheduling. A research framework has been developed using a causal diagram to illustrate the cause-and-effect analysis of schedule pressure. An empirical investigation has been performed by using survey data collected from 102 construction practitioners working in 38 construction sites in Singapore. The results of this survey data analysis indicate that advantages of increasing the pace of work—by working under schedule pressure—can be offset by losses in productivity and quality. The negative effects of schedule pressure arise mainly by working out of sequence, generating work defects, cutting corners, and losing the motivation to work. The adverse effects of schedule pressure can be minimized by scheduling construction activities realistically and planning them proactively, motivating workers, and by establishing an effective project coordination and communication mechanism.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Research in construction innovation highlights construction industry as having many barriers and resistance to innovations and suggests that it needs champions. A hierarchical structural model is presented, to assess the impact of the role of the project manager (PM) on the levels of innovation and project performance. The model adopts the structural equation modelling technique and uses the survey data collected from PMs and project team members working for general contractors in Singapore. The model fits well to the observed data, accounting for 24%, 37% and 49% of the variance in championing behaviour, the level of innovation and project performance, respectively. The results of this study show the importance of the championing role of PMs in construction innovation. However, in order to increase their effectiveness, such a role should be complemented by their competency and professionalism, tactical use of influence tactics, and decision authority. Moreover, senior management should provide adequate resources and a sustained support to innovation and create a conducive environment or organizational culture that nurtures and facilitates the PM’s role in the construction project as a champion of innovation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Previous research on construction innovation has commonly recognized the importance of the organizational climate and key individuals, often called “champions,” for the success of innovation. However, it rarely focuses on the role of participants at the project level and addresses the dynamics of construction innovation. This paper therefore presents a dynamic innovation model that has been developed using the concept of system dynamics. The model incorporates the influence of several individual and situational factors and highlights two critical elements that drive construction innovations: (1) normative pressure created by project managers through their championing behavior, and (2) instrumental motivation of team members facilitated by a supportive organizational climate. The model is qualified empirically, using the results of a survey of project managers and their project team members working for general contractors in Singapore, by assessing casual relationships for key model variables. Finally, the paper discusses the implications of the model structure for fostering construction innovations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Downtime (DT) caused by non-availability of equipment and equipment breakdown has non-trivial impact on the performance of construction projects. Earlier research has often addressed this fact, but it has rarely explained the causes and consequences of DT – especially in the context of developing countries. This paper presents a DT model to address this issue. Using this model, the generic factors and processes related to DT are identified, and the impact of DT is quantified. By applying the model framework to nine road projects in Nepal, the impact of DT is explored in terms of its duration and cost. The research findings highlight how various factors and processes interact with each other to create DT, and mitigate or exacerbate its impact on project performance. It is suggested that construction companies need to adopt proactive equipment management and maintenance programs to minimize the impact of DT.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study explored the flexural performance of an innovative Hybrid Composite Floor Plate System (HCFPS), comprised of Polyurethane (PU) core, outer layers of Glass-fibre Reinforced Cement (GRC) and steel laminates at tensile regions, using experimental testing and Finite Element (FE) modelling. Bending and cyclic loading tests for the HCFPS panels and a comprehensive material testing program for component materials were carried out. HCFPS test panel exhibited ductile behaviour and flexural failure with a deflection ductility index of 4. FE models of HCFPS were developed using the program ABAQUS and validated with experimental results. The governing criteria of stiffness and flexural performance of HCFPS can be improved by enhancing the properties of component materials. HCFPS is 50-70% lighter in weight when compared to conventional floor systems. This study shows that HCFPS can be used for floor structures in commercial and residential buildings as an alternative to conventional steel concrete composite systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Good daylighting design in buildings not only provides a comfortable luminous environment, but also delivers energy savings and comfortable and healthy environments for building occupants. Yet, there is still no consensus on how to assess what constitutes good daylighting design. Currently amongst building performance guidelines, Daylighting factors (DF) or minimum illuminance values are the standard; however, previous research has shown the shortcomings of these metrics. New computer software for daylighting analysis contains new more advanced metrics for daylighting (Climate Base Daylight Metrics-CBDM). Yet, these tools (new metrics or simulation tools) are not currently understood by architects and are not used within architectural firms in Australia. A survey of architectural firms in Brisbane showed the most relevant tools used by industry. The purpose of this paper is to assess and compare these computer simulation tools and new tools available architects and designers for daylighting. The tools are assessed in terms of their ease of use (e.g. previous knowledge required, complexity of geometry input, etc.), efficiency (e.g. speed, render capabilities, etc.) and outcomes (e.g. presentation of results, etc. The study shows tools that are most accessible for architects, are those that import a wide variety of files, or can be integrated into the current 3d modelling software or package. These software’s need to be able to calculate for point in times simulations, and annual analysis. There is a current need in these software solutions for an open source program able to read raw data (in the form of spreadsheets) and show that graphically within a 3D medium. Currently, development into plug-in based software’s are trying to solve this need through third party analysis, however some of these packages are heavily reliant and their host program. These programs however which allow dynamic daylighting simulation, which will make it easier to calculate accurate daylighting no matter which modelling platform the designer uses, while producing more tangible analysis today, without the need to process raw data.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose – The purpose of this paper is to provide a new type of entry mode decision-making model for construction enterprises involved in international business. Design/methodology/approach – A hybrid method combining analytic hierarchy process (AHP) with preference ranking organization method for enrichment evaluations (PROMETHEE) is used to aid entry mode decisions. The AHP is used to decompose the entry mode problem into several dimensions and determine the weight of each criterion. In addition, PROMETHEE method is used to rank candidate entry modes and carry out sensitivity analyses. Findings – The proposed decision-making method is demonstrated to be a suitable approach to resolve the entry mode selection decision problem. Practical implications – The research provides practitioners with a more systematic decision framework and a more precise decision method. Originality/value – The paper sheds light on the further development of entry strategies for international construction markets. It not only introduces a new decision-making model for entry mode decision making, but also provides a conceptual framework with five determinants for a construction company entry mode selection based on the unique properties of the construction industry.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Public-private partnerships (PPPs) are increasingly used to procure Australian infrastructure projects. As with all construction projects, the early briefing stages are often the most crucial in determining a successful outcome. There is, however, a lack of systematic research on the type and nature of the critical factors affecting the effectiveness and efficiency of PPP during this period. A literature review is presented of PPP usage in Australia, in which four main categories of factors (procurement, stakeholder, risk, and finance) are identified, each with several subfactors. A questionnaire survey involving state government stakeholders is also described, and a mathematical model that ranks the factors involved is developed. This is followed by an examination of the potential of the factors to help improve the PPP briefing stage for both public and private sectors.