667 resultados para Integrated structure
Resumo:
Experimental studies of Bi heteroepitaxy on Si(001) have recently uncovered a self-organised nanoline motif which has no detectable width dispersion. The Bi lines can be grown with an aspect ratio that is greater than 350 : 1. This paper describes a study of the nanoline geometry and electronic structure using a combination of scanning tunneling microscopy (STM) and ab initio theoretical methods. In particular, the effect that the lines have on Si(001) surface structure at large length scales, l > 100 nm, is studied. It has been found that Bi line growth on surfaces that have regularly spaced single height steps results in a 'preferred' domain orientation.
Resumo:
Recently, halogen···halogen interactions have been demonstrated to stabilize two-dimensional supramolecular assemblies at the liquid–solid interface. Here we study the effect of changing the halogen, and report on the 2D supramolecular structures obtained by the adsorption of 2,4,6-tris(4-bromophenyl)-1,3,5-triazine (TBPT) and 2,4,6-tris(4-iodophenyl)-1,3,5-triazine (TIPT) on both highly oriented pyrolytic graphite and the (111) facet of a gold single crystal. These molecular systems were investigated by combining room-temperature scanning tunneling microscopy in ambient conditions with density functional theory, and are compared to results reported in the literature for the similar molecules 1,3,5-tri(4-bromophenyl)benzene (TBPB) and 1,3,5-tri(4-iodophenyl)benzene (TIPB). We find that the substrate exerts a much stronger effect than the nature of the halogen atoms in the molecular building blocks. Our results indicate that the triazine core, which renders TBPT and TIPT stiff and planar, leads to stronger adsorption energies and hence structures that are different from those found for TBPB and TIPB. On the reconstructed Au(111) surface we find that the TBPT network is sensitive to the fcc- and hcp-stacked regions, indicating a significant substrate effect. This makes TBPT the first molecule reported to form a continuous monolayer at room temperature in which molecular packing is altered on the differently reconstructed regions of the Au(111) surface. Solvent-dependent polymorphs with solvent coadsorption were observed for TBPT on HOPG. This is the first example of a multicomponent self-assembled molecular networks involving the rare cyclic, hydrogen-bonded hexamer of carboxylic groups, R66(24) synthon.
Resumo:
The overarching aim of biomimetic approaches to materials synthesis is to mimic simultaneously the structure and function of a natural material, in such a way that these functional properties can be systematically tailored and optimized. In the case of synthetic spider silk fibers, to date functionalities have largely focused on mechanical properties. A rapidly expanding body of literature documents this work, building on the emerging knowledge of structure–function relationships in native spider silks, and the spinning processes used to create them. Here, we describe some of the benchmark achievements reported until now, with a focus on the last five years. Progress in protein synthesis, notably the expression on full-size spidroins, has driven substantial improvements in synthetic spider silk performance. Spinning technology, however, lags behind and is a major limiting factor in biomimetic production. We also discuss applications for synthetic silk that primarily capitalize on its nonmechanical attributes, and that exploit the remarkable range of structures that can be formed from a synthetic silk feedstock.
Resumo:
Bi1.5ZnTa1.5O7 (BZT) has been synthesized using an alkoxide based sol-gel reaction route. The evolution of the phases produced from the alkoxide precursors and their properties have been characterized as function of temperature using a combination of thermogravimetric analysis (TGA) coupled with mass spectrometry (MS), infrared emission spectrometry (IES), X-ray diffraction (XRD), ultraviolet and visible (UV-Vis) spectroscopy, Raman spectroscopy, and N2 adsorption/desorption isotherms. The lowest sintering temperature (600∘C) to obtain phase pure BZT powders with high surface area (14.5m2/g) has been determined from the thermal decomposition and phase analyses.The photocatalytic activity of the BZT powders has been tested for the decolorization of organic azo-dye and found to be photoactive under UV irradiation.The electronic band structure of the BZT has been investigated using density functional theory (DFT) calculations to determine the band gap energy (3.12 eV) and to compare it with experimental band gap (3.02 eV at 800∘C) from optical absorptionmeasurements. An excellent match is obtained for an assumption of Zn cation substitutions at specifically ordered sites in the BZT structure.
Resumo:
This article focusses upon multi-modal transportation systems (MMTS) and the issues surrounding the determination of system capacity. For that purpose a multi-objective framework is advocated that integrates all the different modes and many different competing capacity objectives. This framework is analytical in nature and facilitates a variety of capacity querying and capacity expansion planning.
Resumo:
Coronary calcium scoring (CCS) has been a topic of great interest lately. In a large population-based study comprising 6,722 patients, Detrano et al. (1) have effectively shown that CCS can be a strong predictor of incident coronary heart disease among different racial groups. Henneman et al. (2) have, however, reported that CCS does not reliably exclude the presence of (significant) atherosclerosis. This topic is quite controversial as there is significant evidence from Detrano's work that higher CCS is associated with an increased risk of acute coronary events. We think that the location of calcium within the coronary arteries should also be considered. Li et al. (3,4) have shown that the position of the calcium in the plaque is a better determinant of plaque vulnerability than the total calcium load. Using a biomechanical model, predicted maximum stress was found to increase by 47.5% when calcium deposits were located in the thin fibrous cap. The presence of calcium deposits in the lipid core or remote from the fibrous cap resulted in no increase in maximum stress. It was also noted that the presence of calcification within the lipid core may even stabilize the plaque. Integration of calcium location in CCS will, therefore, enable better assessment of severity of atherosclerosis and prediction of future cardiovascular events.