727 resultados para Ecological engineering.
Resumo:
Humans dominate many important Earth system processes including the nitrogen (N) cycle. Atmospheric N deposition affects fundamental processes such as carbon cycling, climate regulation, and biodiversity, and could result in changes to fundamental Earth system processes such as primary production. Both modelling and experimentation have suggested a role for anthropogenically altered N deposition in increasing productivity, nevertheless, current understanding of the relative strength of N deposition with respect to other controls on production such as edaphic conditions and climate is limited. Here we use an international multiscale data set to show that atmospheric N deposition is positively correlated to aboveground net primary production (ANPP) observed at the 1-m2 level across a wide range of herbaceous ecosystems. N deposition was a better predictor than climatic drivers and local soil conditions, explaining 16% of observed variation in ANPP globally with an increase of 1 kg N·ha-1·yr-1 increasing ANPP by 3%. Soil pH explained 8% of observed variation in ANPP while climatic drivers showed no significant relationship. Our results illustrate that the incorporation of global N deposition patterns in Earth system models are likely to substantially improve estimates of primary production in herbaceous systems. In herbaceous systems across the world, humans appear to be partially driving local ANPP through impacts on the N cycle.
Resumo:
The issue of engineering education and how it can systemically embed sustainable development knowledge and skills is now a major consideration for engineering educators globally. In this plenary presentation Ms Desha will begin by highlighting the rapidly changing market and regulatory environment and the time lag dilemma facing higher education with regard to delivering professionals who can address societal needs. She will then briefly present a series of elements of curriculum renewal to support engineering educators who are grappling with how programs of study can be rapidly renewed to address such emerging 21st Century challenges. The presentation will conclude with a discussion of the need for astrategic approach by higher education institutions, to ensure that the latest research and opportunities are communicated, while being sufficiently pragmatic and realistic with regard to the scale of the challenges, and existing inertia within the higher education system.
Resumo:
While there is clear recognition of the need to incorporate sustainable development into university curricula, there is limited research that examines how to achieve that integration or evaluates its impacts on student learning. This paper responds to these knowledge gaps through a case study of curriculum renewal that involved embedding sustainability into a first year engineering curriculum. The initiative was guided by a deliberative and dynamic model for curriculum renewal that brought together internal and external stakeholders through a structured sequence of facilitated workshops and meetings. That process identified sustainability-related knowledge and skills relevant for first year engineering, and faculty members teaching in the first year program were guided through a process of curriculum renewal to meet those needs. The process through which the whole of curriculum renewal was undertaken is innovative and provides a case study of precedent in the field of education for sustainability. The study demonstrates the contribution that can be made by a web-based sustainability portal in supporting curriculum renewal. Learning and teaching outcomes were evaluated through ‘before and after surveys’ of the first year engineering students. Statistically significant increases in student's self-reported knowledge of sustainability were measured as a result of exposure to the renewed first year curriculum and this confirmed the value of the initiative in terms of enhancing student learning. While applied in this case to engineering, the process to achieve integration of sustainability into the curriculum approach is likely to have value for other academic disciplines. Considering student performance on assignments and exam questions relating to sustainability would provide a stronger basis for future research to understand the impact of initiatives like this on student learning.
Resumo:
Background Understanding how different socioeconomic indicators are associated with transport modes provide insight into which interventions might contribute to reducing socioeconomic inequalities in health. The purpose of this study was to examine associations between neighbourhood-level socioeconomic disadvantage, individual-level socioeconomic position (SEP) and usual transport mode. Methods This investigation included 11,036 residents from 200 neighbourhoods in Brisbane, Australia. Respondents self-reported their usual transport mode (car or motorbike, public transport, walking or cycling). Indicators for individual-level SEP were education, occupation, and household income; and neighbourhood disadvantage was measured using a census-derived index. Data were analysed using multilevel multinomial logistic regression. High SEP respondents and residents of the most advantaged neighbourhoods who used a private motor vehicle as their usual form of transport was the reference category. Results Compared with driving a motor vehicle, the odds of using public transport were higher for white collar employees (OR1.68, 95%CrI 1.41-2.01), members of lower income households (OR 1.71 95%CrI 1.25-2.30), and residents of more disadvantaged neighbourhoods (OR 1.93, 95%CrI 1.46-2.54); and lower for respondents with a certificate-level education (OR 0.60, 95%CrI 0.49-0.74) and blue collar workers (OR 0.63, 95%CrI 0.50-0.81). The odds of walking for transport were higher for the least educated (OR 1.58, 95%CrI 1.18-2.11), those not in the labour force (OR 1.94, 95%CrI 1.38-2.72), members of lower income households (OR 2.10, 95%CrI 1.23-3.64), and residents of more disadvantaged neighbourhoods (OR 2.73, 95%CrI 1.46-5.24). The odds of cycling were lower among less educated groups (OR 0.31, 95% CrI 0.19-0.48). Conclusion The relationships between socioeconomic characteristics and transport modes are complex, and provide challenges for those attempting to encourage active forms of transportation. Further work is required exploring the individual- and neighbourhood-level mechanisms behind transport mode choice, and what factors might influence individuals from different socioeconomic backgrounds to change to more active transport modes.
Resumo:
The centrality of knowledge sharing to organizations’ sustainability has been established. This research explores and illustrates the influences for individual professionals and paraprofessionals – specifically civil engineers and design drafters – to share their deep, personally constructed knowledge, in a public sector provider of railways infrastructure. It investigates the extent to which: (i) knowledge sharing will be positively influenced by the professional identity, values and knowledge culture to achieve organizational and project goals, and; (ii) sharing of deep personal expertise will be influenced by the quality of relational capital among individuals and individual perspectives. It finds that knowledge sharing develops within frameworks established through the alignment among sector, profession and organization values. However, individual behavior is found to be most strongly influenced by the presence and quality of relational capital and individuals’ personal perspectives.
Resumo:
Invasive non-native plants have negatively impacted on biodiversity and ecosystem functions world-wide. Because of the large number of species, their wide distributions and varying degrees of impact, we need a more effective method for prioritizing control strategies for cost-effective investment across heterogeneous landscapes. Here, we develop a prioritization framework that synthesizes scientific data, elicits knowledge from experts and stakeholders to identify control strategies, and appraises the cost-effectiveness of strategies. Our objective was to identify the most cost-effective strategies for reducing the total area dominated by high-impact non-native plants in the Lake Eyre Basin (LEB). We use a case study of the ˜120 million ha Lake Eyre Basin that comprises some of the most distinctive Australian landscapes, including Uluru-Kata Tjuta National Park. More than 240 non-native plant species are recorded in the Lake Eyre Basin, with many predicted to spread, but there are insufficient resources to control all species. Lake Eyre Basin experts identified 12 strategies to control, contain or eradicate non-native species over the next 50 years. The total cost of the proposed Lake Eyre Basin strategies was estimated at AU$1·7 billion, an average of AU$34 million annually. Implementation of these strategies is estimated to reduce non-native plant dominance by 17 million ha – there would be a 32% reduction in the likely area dominated by non-native plants within 50 years if these strategies were implemented. The three most cost-effective strategies were controlling Parkinsonia aculeata, Ziziphus mauritiana and Prosopis spp. These three strategies combined were estimated to cost only 0·01% of total cost of all the strategies, but would provide 20% of the total benefits. Over 50 years, cost-effective spending of AU$2·3 million could eradicate all non-native plant species from the only threatened ecological community within the Lake Eyre Basin, the Great Artesian Basin discharge springs. Synthesis and applications. Our framework, based on a case study of the ˜120 million ha Lake Eyre Basin in Australia, provides a rationale for financially efficient investment in non-native plant management and reveals combinations of strategies that are optimal for different budgets. It also highlights knowledge gaps and incidental findings that could improve effective management of non-native plants, for example addressing the reliability of species distribution data and prevalence of information sharing across states and regions.
Resumo:
Environmental acoustic recordings can be used to perform avian species richness surveys, whereby a trained ornithologist can observe the species present by listening to the recording. This could be made more efficient by using computational methods for iteratively selecting the richest parts of a long recording for the human observer to listen to, a process known as “smart sampling”. This allows scaling up to much larger ecological datasets. In this paper we explore computational approaches based on information and diversity of selected samples. We propose to use an event detection algorithm to estimate the amount of information present in each sample. We further propose to cluster the detected events for a better estimate of this amount of information. Additionally, we present a time dispersal approach to estimating diversity between iteratively selected samples. Combinations of approaches were evaluated on seven 24-hour recordings that have been manually labeled by bird watchers. The results show that on average all the methods we have explored would allow annotators to observe more new species in fewer minutes compared to a baseline of random sampling at dawn.
Resumo:
Climate change is a major threat to global biodiversity, and its impacts can act synergistically to heighten the severity of other threats. Most research on projecting species range shifts under climate change has not been translated to informing priority management strategies on the ground. We develop a prioritization framework to assess strategies for managing threats to biodiversity under climate change and apply it to the management of invasive animal species across one-sixth of the Australian continent, the Lake Eyre Basin. We collected information from key stakeholders and experts on the impacts of invasive animals on 148 of the region's most threatened species and 11 potential strategies. Assisted by models of current distributions of threatened species and their projected distributions, experts estimated the cost, feasibility, and potential benefits of each strategy for improving the persistence of threatened species with and without climate change. We discover that the relative cost-effectiveness of invasive animal control strategies is robust to climate change, with the management of feral pigs being the highest priority for conserving threatened species overall. Complementary sets of strategies to protect as many threatened species as possible under limited budgets change when climate change is considered, with additional strategies required to avoid impending extinctions from the region. Overall, we find that the ranking of strategies by cost-effectiveness was relatively unaffected by including climate change into decision-making, even though the benefits of the strategies were lower. Future climate conditions and impacts on range shifts become most important to consider when designing comprehensive management plans for the control of invasive animals under limited budgets to maximize the number of threatened species that can be protected.
Resumo:
Engineers and asset managers must often make decisions on how to best allocate limited resources amongst different interrelated activities, including repair, renewal, inspection, and procurement of new assets. The presence of project interdependencies and the lack of sufficient information on the true value of an activity often produce complex problems and leave the decision maker guessing about the quality and robustness of their decision. In this paper, a decision support framework for uncertain interrelated activities is presented. The framework employs a methodology for multi-criteria ranking in the presence of uncertainty, detailing the effect that uncertain valuations may have on the priority of a particular activity. The framework employs employing semi-quantitative risk measures that can be tailored to an organisation and enable a transparent and simple-to-use uncertainty specification by the decision maker. The framework is then demonstrated on a real world project set from a major Australian utility provider.
Resumo:
This chapter extends the phenomenographical research method by arguing the merits of engineering the outcome space from these investigations to effectively communicate the outcomes to an audience in technology-based discipline areas. Variations discovered from the phenomenographical study are blended with pre and post tests and a frequency distribution. Outcomes are then represented in a visual statistical manner to suit the specific target audience. This chapter provides useful insights that will be of interest to researchers wishing to present findings from qualitative research methods, and particularly the outcomes of phenomenographic investigations, to an audience in technology-based discipline areas.
Resumo:
Oxygen flux between aquatic ecosystems and the water column is a measure of ecosystem metabolism. However, the oxygen flux varies during the day in a “hysteretic” pattern: there is higher net oxygen production at a given irradiance in the morning than in the afternoon. In this study, we investigated the mechanism responsible for the hysteresis in oxygen flux by measuring the daily pattern of oxygen flux, light, and temperature in a seagrass ecosystem (Zostera muelleri in Swansea Shoals, Australia) at three depths. We hypothesised that the oxygen flux pattern could be due to diel variations in either gross primary production or respiration in response to light history or temperature. Hysteresis in oxygen flux was clearly observed at all three depths. We compared this data to mathematical models, and found that the modification of ecosystem respiration by light history is the best explanation for the hysteresis in oxygen flux. Light history-dependent respiration might be due to diel variations in seagrass respiration or the dependence of bacterial production on dissolved organic carbon exudates. Our results indicate that the daily variation in respiration rate may be as important as the daily changes of photosynthetic characteristics in determining the metabolic status of aquatic ecosystems.
Resumo:
Background: Internationally, there is a growing concern for developing STEM education to prepare students for a scientifically and technologically advanced society. Despite educational bodies lobbying for an increased focus on STEM, there is limited research on how engineering might be incorporated especially in the elementary school curriculum. A framework of five comprehensive core engineering design processes (problem scoping, idea generation, design and construction, design evaluation, redesign), adapted from the literature on design thinking in young children, served as a basis for the study. We report on a qualitative study of fourth-grade students’ developments in working an aerospace problem, which took place during the first year of a 3-year longitudinal study. Students applied design processes together with their mathematics and science knowledge to the design and redesign of a 3-D model plane. Results: The study shows that through an aerospace engineering problem, students could complete initial designs and redesigns of a model plane at varying levels of sophistication. Three levels of increasing sophistication in students’ sketches were identified in their designs and redesigns. The second level was the most prevalent involving drawings or templates of planes together with an indication of how to fold the materials as well as measurements linked to the plane’s construction. The third level incorporated written instructions and calculations. Students’ engagement with each of the framework’s design processes revealed problem scoping components in their initial designs and redesigns. Furthermore, students’ recommendations for improving their launching techniques revealed an ability to apply their mathematics knowledge in conjunction with their science learning on the forces of flight. Students’ addition of context was evident together with an awareness of constraints and a consideration of what was feasible in their design creation. Interestingly, students’ application of disciplinary knowledge occurred more frequently in the last two phases of the engineering framework (i.e., design evaluation and redesign), highlighting the need for students to reach these final phases to enable the science and mathematics ideas to emerge. Conclusions: The study supports research indicating young learners’ potential for early engineering. Students can engage in design and redesign processes, applying their STEM disciplinary knowledge in doing so. An appropriate balance is needed between teacher input of new concepts and students’ application of this learning in ways they choose. For example, scaffolding by the teacher about how to improve designs for increased detail could be included in subsequent experiences. Such input could enhance students’ application of STEM disciplinary knowledge in the redesign process. We offer our framework of design processes for younger learners as one way to approach early engineering education with respect to both the creation of rich problem experiences and the analysis of their learning.
Resumo:
The Australian ageing society with baby boomers reaching retirement age has placed a lot of pressures on housing services. The retirement village is increasingly accepted as a suitable living arrangement for older people. Ecological theory of ageing emphasizes a match between environment and older peoples’ competences. As one response to this, creating village environment in a sustainable way is on the agenda. However, it is not very clear what kinds of sustainable features should be incorporated within the village environment to fit residents’ competences, in particular given that baby boomers who have unique requirements have become the main potential customers. In present paper, a sustainable retirement village framework is proposed by building on ecological theory of ageing and triple bottom line. A two-step inductive reasoning research method is adopted in this conceptualization process. The proposed sustainable retirement village framework contains four domains, including senior-oriented basic settings, financial affordability, age-friendly social environment and environmental sustainability. These four domains are interrelated, and a sustainable retirement village stresses a dynamic balance between different domains. This proposed framework not only gives implications for village developers on creating a suitable village environment to better accommodate residents, but also paves the way for future studies on housing older people in an age-friendly manner.
Resumo:
Genetic introgression of aquaculture stocks in local forms is well documented in many fish species but their evolutionary consequences for the local populations have not been thoroughly explored. Due to its wide geographical range, the existence of many locally adapted forms and the frequent occurrence of introgression of aquaculture stocks in local forms, brown trout represents the ideal system to study the effects of such introgressions. Here, we focus on a group of rivers and streams in Sicily (Italy), and, by using molecular tools, we show that autochthonous populations are probably derived from the Southern Atlantic clade, which is present in the Iberian peninsula and North Africa. Three out of the four studied rivers reveal signs of genetic introgression of domestic stocks. Finally, by using advanced geometric morphometric analyses, we show that genetic introgression produces a higher degree of morphological variability relative to that observed in non-introgressed populations.
Resumo:
This project was a step forward in applying statistical methods and models to provide new insights for more informed decision-making at large spatial scales. The model has been designed to address complicated effects of ecological processes that govern the state of populations and uncertainties inherent in large spatio-temporal datasets. Specifically, the thesis contributes to better understanding and management of the Great Barrier Reef.