802 resultados para data transportation
Resumo:
This thesis describes the development of a robust and novel prototype to address the data quality problems that relate to the dimension of outlier data. It thoroughly investigates the associated problems with regards to detecting, assessing and determining the severity of the problem of outlier data; and proposes granule-mining based alternative techniques to significantly improve the effectiveness of mining and assessing outlier data.
Resumo:
Acoustic sensing is a promising approach to scaling faunal biodiversity monitoring. Scaling the analysis of audio collected by acoustic sensors is a big data problem. Standard approaches for dealing with big acoustic data include automated recognition and crowd based analysis. Automatic methods are fast at processing but hard to rigorously design, whilst manual methods are accurate but slow at processing. In particular, manual methods of acoustic data analysis are constrained by a 1:1 time relationship between the data and its analysts. This constraint is the inherent need to listen to the audio data. This paper demonstrates how the efficiency of crowd sourced sound analysis can be increased by an order of magnitude through the visual inspection of audio visualized as spectrograms. Experimental data suggests that an analysis speedup of 12× is obtainable for suitable types of acoustic analysis, given that only spectrograms are shown.
Resumo:
Between 2001 and 2005, the US airline industry faced financial turmoil while the European airline industry entered a period of substantive deregulation. Consequently, this opened up opportunities for low-cost carriers to become more competitive in the market. To assess airline performance and identify the sources of efficiency in the immediate aftermath of these events, we employ a bootstrap data envelopment analysis truncated regression approach. The results suggest that at the time the mainstream airlines needed to significantly reorganize and rescale their operations to remain competitive. In the second-stage analysis, the results indicate that private ownership, status as a low-cost carrier, and improvements in weight load contributed to better organizational efficiency.
Resumo:
Digital human modeling (DHM) systems underwent significant development within the last years. They achieved constantly growing importance in the field of ergonomic workplace design, product development, product usability, ergonomic research, ergonomic education, audiovisual marketing and the entertainment industry. They help to design ergonomic products as well as healthy and safe socio-technical work systems. In the domain of scientific DHM systems, no industry specific standard interfaces are defined which could facilitate the exchange of 3D solid body data, anthropometric data or motion data. The focus of this article is to provide an overview of requirements for a reliable data exchange between different DHM systems in order to identify suitable file formats. Examples from the literature are discussed in detail. Methods: As a first step a literature review is conducted on existing studies and file formats for exchanging data between different DHM systems. The found file formats can be structured into different categories: static 3D solid body data exchange, anthropometric data exchange, motion data exchange and comprehensive data exchange. Each file format is discussed and advantages as well as disadvantages for the DHM context are pointed out. Case studies are furthermore presented, which show first approaches to exchange data between DHM systems. Lessons learnt are shortly summarized. Results: A selection of suitable file formats for data exchange between DHM systems is determined from the literature review.
Resumo:
As support grows for greater access to information and data held by governments, so does awareness of the need for appropriate policy, technical and legal frameworks to achieve the desired economic and societal outcomes. Since the late 2000s numerous international organizations, inter-governmental bodies and governments have issued open government data policies, which set out key principles underpinning access to, and the release and reuse of data. These policies reiterate the value of government data and establish the default position that it should be openly accessible to the public under transparent and non-discriminatory conditions, which are conducive to innovative reuse of the data. A key principle stated in open government data policies is that legal rights in government information must be exercised in a manner that is consistent with and supports the open accessibility and reusability of the data. In particular, where government information and data is protected by copyright, access should be provided under licensing terms which clearly permit its reuse and dissemination. This principle has been further developed in the policies issued by Australian Governments into a specific requirement that Government agencies are to apply the Creative Commons Attribution licence (CC BY) as the default licensing position when releasing government information and data. A wide-ranging survey of the practices of Australian Government agencies in managing their information and data, commissioned by the Office of the Australian Information Commissioner in 2012, provides valuable insights into progress towards the achievement of open government policy objectives and the adoption of open licensing practices. The survey results indicate that Australian Government agencies are embracing open access and a proactive disclosure culture and that open licensing under Creative Commons licences is increasingly prevalent. However, the finding that ‘[t]he default position of open access licensing is not clearly or robustly stated, nor properly reflected in the practice of Government agencies’ points to the need to further develop the policy framework and the principles governing information access and reuse, and to provide practical guidance tools on open licensing if the broadest range of government information and data is to be made available for innovative reuse.
Resumo:
For decades Supervisory Control and Data Acquisition (SCADA) and Industrial Control Systems (ICS) have used computers to monitor and control physical processes in many critical industries, including electricity generation, gas pipelines, water distribution, waste treatment, communications and transportation. Increasingly these systems are interconnected with corporate networks via the Internet, making them vulnerable and exposed to the same risks as those experiencing cyber-attacks on a conventional network. Very often SCADA networks services are viewed as a specialty subject, more relevant to engineers than standard IT personnel. Educators from two Australian universities have recognised these cultural issues and highlighted the gap between specialists with SCADA systems engineering skills and the specialists in network security with IT background. This paper describes a learning approach designed to help students to bridge this gap, gain theoretical knowledge of SCADA systems' vulnerabilities to cyber-attacks via experiential learning and acquire practical skills through actively participating in hands-on exercises.
Resumo:
This paper investigates: - correlation between transit route passenger loading and travel distance - its implications on quality of service (QoS) and resource productivity. It uses Automatic Fare Collection (AFC) data across a weekday on a premium bus line in Brisbane, Australia. A composite load-distance factor is proposed as a new measure for profiling transit route on-board passenger comfort QoS. Understanding these measures and their correlation is important for planning, design, and operational activities.
Resumo:
This paper investigates quality of service and resource productivity implications of transit route passenger loading and travel distance. Weekday Automatic Fare Collection data for a premium radial bus route in Brisbane, Australia, is used to investigate correlation between load factor and distance factor. Relationships between boardings and transit work indicate that distance factor generally increases with load factor. Time series analysis is then presented by examining each direction on an hour by hour basis. Inbound correlation is medium to strong across the entire span of service and strong for daytime services up to 19:30, while outbound correlation is strong across the entire span. Passengers tend to be making longer distance, peak direction commuter trips under the least comfortable conditions under stretched peak schedules than off-peak. Therefore productivity gains may be possible by adjusting fleet utilization during off-peak times. Weekday profiles by direction are established for a composite load-distance factor. A threshold corresponding to standing passengers on the Maximum Load Segment reveals that on-board loading and travel distance combined are more severe during the morning inbound peak than evening outbound peak, although the sharpness of the former suggests that encouraging shoulder peak travel during the morning would be more effective than evening peak. Further research suggested includes: consideration of travel duration factor, relating noise within hour to Peak Hour Factor, profiling load-distance factor across a range of case studies, and relating load-distance factor threshold to line length.
Resumo:
This study considered the problem of predicting survival, based on three alternative models: a single Weibull, a mixture of Weibulls and a cure model. Instead of the common procedure of choosing a single “best” model, where “best” is defined in terms of goodness of fit to the data, a Bayesian model averaging (BMA) approach was adopted to account for model uncertainty. This was illustrated using a case study in which the aim was the description of lymphoma cancer survival with covariates given by phenotypes and gene expression. The results of this study indicate that if the sample size is sufficiently large, one of the three models emerge as having highest probability given the data, as indicated by the goodness of fit measure; the Bayesian information criterion (BIC). However, when the sample size was reduced, no single model was revealed as “best”, suggesting that a BMA approach would be appropriate. Although a BMA approach can compromise on goodness of fit to the data (when compared to the true model), it can provide robust predictions and facilitate more detailed investigation of the relationships between gene expression and patient survival. Keywords: Bayesian modelling; Bayesian model averaging; Cure model; Markov Chain Monte Carlo; Mixture model; Survival analysis; Weibull distribution
Resumo:
The Macroscopic Fundamental Diagram (MFD) relates space-mean density and flow, and the existence with dynamic features was confirmed in congested urban network in downtown Yokohama with real data set. Since the MFD represents the area-wide network traffic performances, studies on perimeter control strategies and an area traffic state estimation utilizing the MFD concept has been reported. However, limited works have been reported on real world example from signalised arterial network. This paper fuses data from multiple sources (Bluetooth, Loops and Signals) and develops a framework for the development of the MFD for Brisbane, Australia. Existence of the MFD in Brisbane arterial network is confirmed. Different MFDs (from whole network and several sub regions) are evaluated to discover the spatial partitioning in network performance representation. The findings confirmed the usefulness of appropriate network partitioning for traffic monitoring and incident detections. The discussion addressed future research directions
Resumo:
Public transport travel time variability (PTTV) is essential for understanding deteriorations in the reliability of travel time, optimizing transit schedules and route choices. This paper establishes key definitions of PTTV in which firstly include all buses, and secondly include only a single service from a bus route. The paper then analyses the day-to-day distribution of public transport travel time by using Transit Signal Priority data. A comprehensive approach using both parametric bootstrapping Kolmogorov-Smirnov test and Bayesian Information Creation technique is developed, recommends Lognormal distribution as the best descriptor of bus travel time on urban corridors. The probability density function of Lognormal distribution is finally used for calculating probability indicators of PTTV. The findings of this study are useful for both traffic managers and statisticians for planning and researching the transit systems.
Resumo:
Over the past decade, vision-based tracking systems have been successfully deployed in professional sports such as tennis and cricket for enhanced broadcast visualizations as well as aiding umpiring decisions. Despite the high-level of accuracy of the tracking systems and the sheer volume of spatiotemporal data they generate, the use of this high quality data for quantitative player performance and prediction has been lacking. In this paper, we present a method which predicts the location of a future shot based on the spatiotemporal parameters of the incoming shots (i.e. shot speed, location, angle and feet location) from such a vision system. Having the ability to accurately predict future short-term events has enormous implications in the area of automatic sports broadcasting in addition to coaching and commentary domains. Using Hawk-Eye data from the 2012 Australian Open Men's draw, we utilize a Dynamic Bayesian Network to model player behaviors and use an online model adaptation method to match the player's behavior to enhance shot predictability. To show the utility of our approach, we analyze the shot predictability of the top 3 players seeds in the tournament (Djokovic, Federer and Nadal) as they played the most amounts of games.
Resumo:
Technological advances have led to an influx of affordable hardware that supports sensing, computation and communication. This hardware is increasingly deployed in public and private spaces, tracking and aggregating a wealth of real-time environmental data. Although these technologies are the focus of several research areas, there is a lack of research dealing with the problem of making these capabilities accessible to everyday users. This thesis represents a first step towards developing systems that will allow users to leverage the available infrastructure and create custom tailored solutions. It explores how this notion can be utilized in the context of energy monitoring to improve conventional approaches. The project adopted a user-centered design process to inform the development of a flexible system for real-time data stream composition and visualization. This system features an extensible architecture and defines a unified API for heterogeneous data streams. Rather than displaying the data in a predetermined fashion, it makes this information available as building blocks that can be combined and shared. It is based on the insight that individual users have diverse information needs and presentation preferences. Therefore, it allows users to compose rich information displays, incorporating personally relevant data from an extensive information ecosystem. The prototype was evaluated in an exploratory study to observe its natural use in a real-world setting, gathering empirical usage statistics and conducting semi-structured interviews. The results show that a high degree of customization does not warrant sustained usage. Other factors were identified, yielding recommendations for increasing the impact on energy consumption.
Resumo:
The application of the Bluetooth (BT) technology to transportation has been enabling researchers to make accurate travel time observations, in freeway and arterial roads. The Bluetooth traffic data are generally incomplete, for they only relate to those vehicles that are equipped with Bluetooth devices, and that are detected by the Bluetooth sensors of the road network. The fraction of detected vehicles versus the total number of transiting vehicles is often referred to as Bluetooth Penetration Rate (BTPR). The aim of this study is to precisely define the spatio-temporal relationship between the quantities that become available through the partial, noisy BT observations; and the hidden variables that describe the actual dynamics of vehicular traffic. To do so, we propose to incorporate a multi- class traffic model into a Sequential Montecarlo Estimation algorithm. Our framework has been applied for the empirical travel time investigations into the Brisbane Metropolitan region.
Resumo:
In this paper, a demand-responsive decision support system is proposed by integrating the operations of coal shipment, coal stockpiles and coal railing within a whole system. A generic and flexible scheduling optimisation methodology is developed to identify, represent, model, solve and analyse the coal transport problem in a standard and convenient way. As a result, the integrated train-stockpile-ship timetable is created and optimised for improving overall efficiency of coal transport system. A comprehensive sensitivity analysis based on extensive computational experiments is conducted to validate the proposed methodology. The mathematical proposition and proof are concluded as technical and insightful advices for industry practice. The proposed methodology provides better decision making on how to assign rail rolling-stocks and upgrade infrastructure in order to significantly improve capacity utilisation with the best resource-effectiveness ratio. The proposed decision support system with train-stockpile-ship scheduling optimisation techniques is promising to be applied in railway or mining industry, especially as a useful quantitative decision making tool on how to use more current rolling-stocks or whether to buy additional rolling-stocks for mining transportation.