927 resultados para Performance de fundos imobiliários
Resumo:
Introduction Sleep restriction and missing 1 night’s continuous positive air pressure (CPAP) treatment are scenarios faced by obstructive sleep apnoea (OSA) patients, who must then assess their own fitness to drive. This study aims to assess the impact of this on driving performance. Method 11 CPAP treated participants (50–75 yrs), drove an interactive car simulator under monotonous motorway conditions for 2 hours on 3 afternoons, following;(i)normal night’s sleep (average 8.2 h) with CPAP (ii) sleep restriction (5 h), with CPAP (iii)normal length of sleep, without CPAP. Driving incidents were noted if the car came out of the designated driving lane. EEG was recorded continually and KSS reported every 200 seconds. Results Driving incidents: Incidents were more prevalent following CPAP withdrawal during hour 1, demonstrating a significant condition time interaction [F(6,60) = 3.40, p = 0.006]. KSS: At the start of driving participants felt sleepiest following CPAP withdrawal, by the end of the task KSS levels were similar following CPAP withdrawal and sleep restriction, demonstrating a significant condition, time interaction [F(3.94,39.41) = 3.39, p = 0.018]. EEG: There was a non significant trend for combined alpha and theta activity to be highest throughout the drive following CPAP withdrawal. Discussion CPAP withdrawal impairs driving simulator performance sooner than restricting sleep to 5 h with CPAP. Participants had insight into this increased sleepiness reflected by the higher KSS reported following CPAP withdrawal. In the practical terms of driving any one incident could be fatal. The earlier impairment reported here demonstrates the potential danger of missing CPAP treatment and highlights the benefit of CPAP treatment even when sleep time is short.
Resumo:
Light absorption efficiency of heterogeneous catalysts has restricted their photocatalytic capability for commercially important organic synthesis. Here, we report a way of harvesting visible light efficiently to boost zeolite catalysis by means of plasmonic gold nanoparticles (Au-NPs) supported on zeolites. Zeolites possess strong Brønsted acids and polarized electric fields created by extra-framework cations. The polarized electric fields can be further intensified by the electric near-field enhancement of Au-NPs, which results from the localized surface plasmon resonance (LSPR) upon visible light irradiation. The acetalization reaction was selected as a showcase performed on MZSM-5 and Au/MZSM-5 (M = H+, Na+, Ca2+, or La3+). The density functional theory (DFT) calculations confirmed that the intensified polarized electric fields played a critical role in stretching the C = O bond of the reactants of benzaldehyde to enlarge their molecular polarities, thus allowing reactants to be activated more efficiently by catalytic centers so as to boost the reaction rates. This discovery should evoke intensive research interest on plasmonic metals and diverse zeolites with an aim to take advantage of sunlight for plasmonic devices, molecular electronics, energy storage, and catalysis.
Resumo:
In many active noise control (ANC) applications, an online secondary path modelling method that uses a white noise as a training signal is required. This paper proposes a new feedback ANC system. Here we modified both the FxLMS and the VSS-LMS algorithms to raised noise attenuation and modelling accuracy for the overall system. The proposed algorithm stops injection of the white noise at the optimum point and reactivate the injection during the operation, if needed, to maintain performance of the system. Preventing continuous injection of the white noise increases the performance of the proposed method significantly and makes it more desirable for practical ANC systems. Computer simulation results shown in this paper indicate effectiveness of the proposed method.
Resumo:
Collaborative infrastructure projects use hybrid formal and informal governance structures to manage transactions. Based on previous desk-top research, the authors identified the key mechanisms underlying project governance, and posited the performance implications of the governance (Chen et al. 2012). The current paper extends that qualitative research by testing the veracity of those findings using data from 320 Australian construction organisations. The results provide, for the first time, reliable and valid scales to measure governance and performance of collaborative projects, and the relationship between them. The results confirm seven of seven hypothesised governance mechanisms; 30 of 43 hypothesised underlying actions; eight of eight hypothesised key performance indicators; and the dual importance of formal and informal governance. A startling finding of the study was that the implementation intensity of informal mechanisms (non-contractual conditions) is a greater predictor of project performance variance than that of formal mechanisms (contractual conditions). Further, contractual conditions do not directly impact project performance; instead their impact is mediated by the non-contractual features of a project. Obligations established under the contract are not sufficient to optimise project performance.
Resumo:
Load bearing LSF walls are commonly made of cold-formed steel frames, gypsum plasterboards and insulation, and their fire performance is an important aspect of design. Many experimental and numerical studies have been conducted on the fire performance of LSF walls at the Queensland University of Technology (QUT). These studies have shown that increasing the number or thickness or quality of gypsum plasterboards has improved the fire resistance ratings (FRR) of LSF walls while the use of cavity insulation has reduced their FRR. Therefore new LSF wall systems with external insulation sandwiched between two layers of plasterboards were proposed, which provided higher FRR than cavity insulated walls. There are also other parameters that can improve the fire performance of LSF walls such as the steel type, stud geometry and depth, type of screw fasteners used, joints in the plasterboard and the plasterboard fall off time. This paper presents a review of the fire performance of LSF walls as a function of these parameters based on our research at QUT. Their effects on both the thermal and structural performance of LSF walls are discussed in detail and suitable improvements are recommended, for example, improved plasterboard joint types.
Resumo:
Load bearing Light Gauge Steel Frame (LSF) walls are commonly made of conventional lipped channel sections and gypsum plasterboards. Recently, innovative steel sections such as hollow flange channel sections have been proposed as studs in LSF wall frames with a view to improve their fire resistance ratings. A series of full scale fire tests was then undertaken to investigate the fire performance of the new LSF wall systems under standard fire conditions. Test wall frames made of hollow flange section studs were lined with fire resistant gypsum plasterboards on both sides, and were subjected to increasing temperatures as given by the standard fire curve on one side. Both uninsulated and cavity insulated walls were tested with varying load ratios from 0.2 to 0.6. This paper presents the details of this experimental study on the fire performance of LSF walls and the results. Test results showed that the walls made of the new hollow flange channel section studs have a superior fire performance in comparison to that of lipped channel section stud walls. They also showed that the fire performance of cavity insulated walls was inferior to that of uninsulated walls. The reasons for this fire behaviour are described in this paper.
Resumo:
Fire incident in buildings is common, so the fire safety design of the framed structure is imperative, especially for the unprotected or partly protected bare steel frames. However, software for structural fire analysis is not widely available. As a result, the performance-based structural fire design is urged on the basis of using user-friendly and conventional nonlinear computer analysis programs so that engineers do not need to acquire new structural analysis software for structural fire analysis and design. The tool is desired to have the capacity of simulating the different fire scenarios and associated detrimental effects efficiently, which includes second-order P-D and P-d effects and material yielding. Also the nonlinear behaviour of large-scale structure becomes complicated when under fire, and thus its simulation relies on an efficient and effective numerical analysis to cope with intricate nonlinear effects due to fire. To this end, the present fire study utilizes a second order elastic/plastic analysis software NIDA to predict structural behaviour of bare steel framed structures at elevated temperatures. This fire study considers thermal expansion and material degradation due to heating. Degradation of material strength with increasing temperature is included by a set of temperature-stress-strain curves according to BS5950 Part 8 mainly, which implicitly allows for creep deformation. This finite element stiffness formulation of beam-column elements is derived from the fifth-order PEP element which facilitates the computer modeling by one member per element. The Newton-Raphson method is used in the nonlinear solution procedure in order to trace the nonlinear equilibrium path at specified elevated temperatures. Several numerical and experimental verifications of framed structures are presented and compared against solutions in literature. The proposed method permits engineers to adopt the performance-based structural fire analysis and design using typical second-order nonlinear structural analysis software.
Resumo:
The overall aim of this research project was to provide a broader range of value propositions (beyond upfront traditional construction costs) that could transform both the demand side and supply side of the housing industry. The project involved gathering information about how building information is created, used and communicated and classifying building information, leading to the formation of an Information Flow Chart and Stakeholder Relationship Map. These were then tested via broad housing industry focus groups and surveys. The project revealed four key relationships that appear to operate in isolation to the whole housing sector and may have significant impact on the sustainability outcomes and life cycle costs of dwellings over their life cycle. It also found that although a lot of information about individual dwellings does already exist, this information is not coordinated or inventoried in any systematic manner and that national building information files of building passports would present value to a wide range of stakeholders.
Resumo:
This paper focuses on the use of externally bonded Carbon Fiber Reinforced Polymer (CFRP) materials to strengthen steel plates subjected to compression. A fully slender steel section was selected in this test programme. CFRP strengthened steel plates and non strengthened plates were tested to fail under compressive load. The middle part of the strut was strengthened using CFRP sheet. The length of the strengthened zone was varied. Eight specimens were tested in this test programme. The test results showed a significant strength gain of 47% and delaying of lateral torsional buckling failure mode of strengthened members. This study confirms that there is great potential to increase the short term performance of CFRP strengthened steel structure under axial compression.
Resumo:
This research was commissioned by Metecno Pty Ltd, trading as Bondor®. The InsulLiving house was designed and constructed by Bondor®. The house instrumentation (electricity circuits, indoor environment, weather station) was provided by Bondor and supplied and installed by independent contractors. This report contains analysis of data collected from the InsulLiving house at Burpengary during 1 year of occupancy by a family of four for the period 1 April 2012 – 31 March 2013. The data shows a daily average electricity consumption 48% less than the regional average. The analysis confirms that the 9 star house performed thermally slightly better than the simulated performance. The home was 'near zero energy', with its modest 2.1kW solar power system meeting all of the needs for space heating and cooling, lighting and most water heating.
Resumo:
Knowledge-based development has become a new urban policy approach for the competitive cities of the global knowledge economy era. For those cities seeking a knowledge-based development, benchmarking is an essential prerequisite for informed and strategic vision and policy making to achieve a prosperous development. Nevertheless, benchmarked knowledge-based development performance analysis of global and emerging knowledge cities is an understudied area. This paper aims to contribute to the field by introducing the methodology of a novel performance assessment model—that is the Knowledge-Based Urban Development Assessment Model—and providing lessons from the application of the model in an international knowledge city performance analysis study. The assessment model puts renowned global and emerging knowledge cities—that are Birmingham, Boston, Brisbane, Helsinki, Istanbul, Manchester, Melbourne, San Francisco, Sydney, Toronto, and Vancouver—under the knowledge-based development microscope. The results of the analysis provide internationally benchmarked snapshot of the degree of achievements in various knowledge-based urban development performance areas of the investigated knowledge cities, and reveals insightful lessons on scrutinizing the global perspectives on knowledge-based development of cities.
Resumo:
Utilising quantitative and qualitative research methods the thesis explored how movement patterns were coordinated under different conditions in elite athletes. Results revealed each elite athlete's ability to use multiple, varied information sources to guide successful task performance, highlighting the specific role of surrounding objects in the performance environment to perceptually guide behaviour. Combining elite coaching knowledge with empirical research enhanced understanding of the role of vision in regulating interceptive behaviours, enhancing the representative design of training environments. The main findings have been applied to training design of the Athletics Australia National Jumps Centre at the Queensland Academy of Sport in preparation for the World Indoor Championships, World Championships, and Olympic Games for Australian long and triple jumpers.
Resumo:
Live migration of multiple Virtual Machines (VMs) has become an indispensible management activity in datacenters for application performance, load balancing, server consolidation. While state-of-the-art live VM migration strategies focus on the improvement of the migration performance of a single VM, little attention has been given to the case of multiple VMs migration. Moreover, existing works on live VM migration ignore the inter-VM dependencies, and underlying network topology and its bandwidth. Different sequences of migration and different allocations of bandwidth result in different total migration times and total migration downtimes. This paper concentrates on developing a multiple VMs migration scheduling algorithm such that the performance of migration is maximized. We evaluate our proposed algorithm through simulation. The simulation results show that our proposed algorithm can migrate multiple VMs on any datacenter with minimum total migration time and total migration downtime.